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ABSTRACT 
In order to promote geometric understanding, teachers frequently use hands-on activities. Such activities 
can be used to expound upon the declarative statements and theorems of geometry. Using a compass, 
straightedge, and protractor, students are able to actively build conceptions involving bisectors, midpoints, 
and perpendicular lines. Additionally, activities that require students to problem-solve and formulate 
problems, using their construction knowledge and skills, can reinforce and strengthen that which they have 
learned. This article describes STEAM instruction with high school geometry students designed to 
productively integrate geometric constructions, digital technology, elements of art, and principles of design 
to enhance students’ geometric reasoning. 
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INTRODUCTION 

Geometry and spatial sense provide students with understandings and ways of thinking that can be applied in 
a variety of contexts. In addition, geometric reasoning offers ways to interpret, describe, and reflect on our physical 
environment and can serve as a tool for study in other areas of mathematics, the sciences, and various real-world 
situations (National Council for Teachers of Mathematics, 2000, p. 41). In the United States, Geometry not only 
frequently represents a high school student’s first formal introduction to abstract reasoning, but the Common 
Core’s Geometry conceptual category also places “new emphasis on geometry proof and construction (prove 
geometric theorems, make geometric constructions)” (Harel, 2014, p. 25)—concepts well established as one of the most 
difficult for students and their teachers (e.g., Battista and Clements, 1992; Chavula and Nkhata, 2019; Erduran and 
Yesildere, 2010; Harel and Sowder, 2007; Hart, 1994; Yackel and Hanna, 2003).  

Prior research has examined instruction designed to promote students’ mathematical reasoning, particularly as 
it relates to proof, through a focus on increasing teachers’ awareness of students’ cognitive skills, attitudes, and 
misconceptions (Mistretta, 2000), students’ intellectual need (Harel, 2013; 2014), technology (e.g., Battista, 1998, 
Hollebrands, 2007), and the organization of students’ knowledge (Lawson and Chinnappan, 2000). In this article, 
we describe a high school Geometry teacher’s attempts to promote a STEAM environment by providing her 
students with opportunities to use geometric constructions, and mathematically challenging and aesthetically 
pleasing geometric figures in mathematical proofs; specifically, the report addresses the following research 
question: How can a high school Geometry class integrate geometric constructions, digital technology, elements 
of art, and principles of design to enhance students’ geometric reasoning? 
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GEOMETRIC PROOFS AND CONSTRUCTIONS 

In Geometry, proof can take on different forms, such as: two-column, informal, indirect, and paragraph proofs. 
Geometric constructions are valuable to proof because of the hands-on way that students are motivated to visualize 
theorems as they “come to life” with compass and straightedge. According to Sanders (1998), “Geometric 
constructions can enrich students’ visualization and comprehension of geometry, lay a foundation for analysis and 
deductive proof, provide opportunities for teachers to address multiple intelligences, and allow students to apply 
their creativity to mathematics” (p. 554). Integrating hands-on activities and proof through geometric 
constructions, not only promotes greater student interest, but also provides students with more meaningful 
learning experiences.  

Research by Middleton (1995) indicates that hands-on activities are considered to be motivational by both 
teachers and students. Furthermore, Bergin (1999) describes hands-on activities to be one of the situational factors 
that positively influences classroom (i.e., student) interest. According to Bergin (1999), “People seem to be 
interested in hands-on activities, activities in which they manipulate materials, move around, and engage learning 
in a physical way” (p. 92). In her own classroom, the second author engages students in such activities that include 
straightedge and compass constructions. Furthermore, the second author regularly takes a practical approach to 
STEAM education through arts integration, which Liao (2019) asserts is often “discussed at the level of 
instructional approach and lessons, although its larger goal is also ‘integration,’ which can be implemented in a 
variety of ways” (p. 41). 

STEAM EDUCATION 

Goldsmith et al. (2016) suggest the “development of visual-spatial thinking through the visual arts could 
support geometry learning for students who are not succeeding in mathematics classes” (p. 56). In addition to 
providing much-needed motivation, an important value of explicitly connecting mathematics and art is that it “can 
illuminate pupils’ understanding[s] of some of its purpose” (Hickman and Huckstep, 2003, p. 2). The mathematics 
community often talks about beautiful or aesthetically pleasing theorems or theorem proofs in much the same way 
the art community talks about beauty (Malkevitch, 2003, Introduction section, para. 4). For Hickman and Huckstep 
(2003) there is “an undeniably aesthetic dimension to mathematics . . . [that] is not simply confined to the notion 
of an ‘elegant solution’ to a problem” (p. 4). Rather, mathematics itself has “aesthetic properties and . . . one can 
have an aesthetic experience through mathematics, while acknowledging that aesthetics is not confined to artistic 
activities” (Hickman and Huckstep, 2003, p. 4). 

STEAM education has been described as “intentionally integrating the concepts and practices articulated with 
21st-century skills in curriculum, instruction, assessment, and enrichment, while purposefully integrating science, 
technology, engineering, arts (including but not limited to the visual and performing arts), and mathematics” 
(Gettings, 2016, p. 10). The activities described here incorporate STEAM concepts to promote creativity, digital 
technology (i.e., dynamic geometry software), and Thuneberg et al.’s (2018) assertion that the “aesthetic elements 
of . . . art promote understanding of mathematical concepts by exposing students to concrete space and shape 
experiences” (p. 153). In the following sections, we describe the second author’s implementation of a sequence of 
high school mathematics activities designed to provide students with opportunities to engage in geometric 
reasoning and develop meaningful understandings involving geometry and proof through artistic compass and 
straightedge constructions and digital technology. Taking note of Gettings’ (2016) warning regarding the danger 
of superficially including art in STEM projects, the sequence of activities utilize art to enhance students’ geometric 
reasoning. 

METHODS 

The activities described below are utilized by the second author as part of her Geometry curriculum at a small 
private suburban high school in the midwestern United States. Although the school is a private, college-preparatory 
institution, 40% of the student population receive financial aid, and 25% of students come from minority 
populations (below the state average of 30.4%). Furthermore, the average class size of 19 students is smaller than 
the state average of 20.7 students. 

Data is comprised of class handouts (e.g., activity sheets); student work (written and using GeoGebra); the 
second author’s recollections of her students’ questions, discussions, assertions, and reactions to the activities; and 
video recordings of discussions between both authors regarding the rationale for each activity and their sequencing, 
anticipated and actual student responses, and potential lesson modifications. 
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Standards Addressed by Activities 

Throughout the sequence of activities, the second author and her students investigate (as a class) segment and 
angle constructions, and angle and segment congruence. The first half of the four-day lesson (comprised of four 
45-minute class periods) culminates with students individually constructing a perpendicular bisector to a given line 
segment. The Common Core content standard addressed in these activities are illustrated in Table 1. 

Proof as an interactive, class activity, requires that students create logical arguments by employing meanings 
and reasoning, explicating their own thinking, and critiquing the reasoning of others. As such, the activities provide 
students with opportunities to engage in several of the Common Core Standards for Mathematical Practice 
(frequently identified as MPs). In particular, students engage in MP3 (Construct viable arguments and critique the 
reasoning of others) by making conjectures and building a logical progression of statements to explore the truth 
of their conjectures, by justifying their conclusions, communicating them to others, and responding to the 
arguments of their classmates and teacher (NGA Center & CCSSO, 2010, pp. 6-7). In addition, students will need 
to attend to precision (MP6), by examining claims and making explicit use of definitions (NGA Center & CCSSO, 
2010, p. 7), and use appropriate tools strategically (MP5) by becoming familiar with and utilizing tools (i.e., compass 
and straightedge) to “explore and deepen their understanding of concepts” (NGA Center & CCSSO, 2010, p. 7). 
Along with the mathematical content and practice standards described above, the activities also address two state 
high school visual arts standards (Ohio Department of Education, 2020, p. 4): “Integrate selected elements of art 
and principles of design to construct works of art” and “Increase relevant vocabulary to describe and analyze 
components related to visual art.” Finally, we employ a definition for geometric reasoning as provided in NCTM’s 
(2000) geometry standard, as to: “analyze characteristics and properties of two- and three- dimensional geometric 
shapes and develop mathematical arguments about geometric relationships; apply transformations and use 
symmetry to analyze mathematical situations; and use visualization, spatial reasoning, and geometric modeling to 
solve problems” (p. 41). 

ACTIVITY HIGHLIGHTS 

In order to support students in using their compass and straightedge, the second author projects her sample 
constructions directly to a SMART Board. The class completes most of the requested constructions together, but 
students are occasionally asked to solve problems on their own so they can internally develop the construction 
using their geometric tools. By using this more moderate pace throughout the activities, the second author provides 
time for students to create their own relational system for constructions (van Hiele, 1959/1985; van Hiele and van 
Hiele-Geldof, 1958).  

Some of the constructions involving line segments that students are requested to complete are displayed in 
Figure 1. Note that students’ constructions are completed on a separate sheet of paper and completion of these 
constructions conclude the first 45-minute class period.  

Throughout the line segment construction portion of the lesson, students are motivated to share their thinking 
and reasoning both in pairs and as a whole class. When necessary, students are prompted to use appropriate 

Table 1. Common Core Content Standard Addressed by Lesson (NGA Center & CCSSO, 2010, p. 76) 
Conceptual Category Geometry (G) 
Domain Congruence (CO) 
Cluster D. Make geometric constructions 
Standard 12. Make formal geometric constructions with a variety of tools and methods (compass and 

straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a 
segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the 
perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.  

 

 
Figure 1. Line Segment Constructions 

1. Construct 𝑋𝑋𝑋𝑋���� congruent to 𝐴𝐴𝐴𝐴����. 
 

3. Construct 𝐷𝐷𝐷𝐷���� so that 𝐷𝐷𝐷𝐷���� ≅ 𝑇𝑇𝑇𝑇���� + 𝑃𝑃𝑃𝑃����. 
 

5. Construct 𝑋𝑋𝑋𝑋���� congruent to 𝐴𝐴𝐴𝐴����. 
Construct the perpendicular bisector of 𝑋𝑋𝑋𝑋����. 

2. Construct 𝑉𝑉𝑉𝑉����� so that 𝑉𝑉𝑉𝑉����� ≅ 2𝐴𝐴𝐴𝐴����. 
 

4. Construct 𝑄𝑄𝑄𝑄��� so that 𝑄𝑄𝑄𝑄��� ≅ 𝑇𝑇𝑇𝑇���� − 𝑃𝑃𝑃𝑃����. 
 

6. Construct 𝑀𝑀𝑀𝑀����� congruent to 𝑇𝑇𝑇𝑇����. 
Construct the perpendicular bisector of 𝑀𝑀𝑀𝑀�����. 

A B T R P S 
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terminology (e.g., congruent). According to the second author, students typically extend the activity by asking one 
another questions such as: 

• “Describe how to construct a perpendicular bisector of segment TR that is congruent to segment AB”; 
that is, describe how to construct a perpendicular bisector of 𝑇𝑇𝑇𝑇���� that is congruent to 𝐴𝐴𝐴𝐴����. 

• “Describe how to construct a perpendicular bisector of segment AB that is congruent to twice the 
length of segment PS”; that is, describe how to construct a perpendicular bisector of 𝐴𝐴𝐴𝐴����  that is 
congruent to 2𝑃𝑃𝑃𝑃����.  

• “Describe how to construct a perpendicular bisector of a segment with length equal to the sum of PS 
and TR that is congruent to 3 times the length of segment AB”; that is, describe how to construct a 
perpendicular bisector of 𝑃𝑃𝑃𝑃���� + 𝑇𝑇𝑇𝑇���� that is congruent to 3𝐴𝐴𝐴𝐴����. 

These examples show students coordinating their understandings for congruence and perpendicular bisector 
and visualizing geometric constructions to formulate problems. A long line of research has shown the potential 
for problem posing to benefit student learning in mathematics (e.g., Cai et al., 2013; English, 1998; Yuan and 
Sriraman, 2011). The second author always allows time for students to complete some of these student-formulated 
problems.  

Students also frequently question—either themselves, one another, or their teacher (i.e., second author)—
whether attempts to construct 𝑃𝑃𝑃𝑃���� − 𝐴𝐴𝐴𝐴���� could support their understanding of what it means for the “subtraction 
of a larger number from a smaller number to yield a negative result.” As with students’ other extension questions, 
the second author provides students with time to address this question prior to moving on to angle constructions. 
The second author asserts she must handle such instances with care and focus students’ attention on the definition 
of the length of a line segment as “the distance between its endpoints” and that, as a distance, this length cannot 
be negative. Therefore, the line segment 𝑃𝑃𝑃𝑃���� − 𝐴𝐴𝐴𝐴���� does not exist and the second author promotes (to her students) 
an understanding that the “difference of two line segments” is not the same as arithmetic subtraction. 

Discussions between the two authors have included adding the question: “Describe how to construct 𝐹𝐹𝐹𝐹���� so 
that 4𝐹𝐹𝐹𝐹���� ≅ 𝑇𝑇𝑇𝑇���� (or 𝐹𝐹𝐹𝐹���� ≅ 1

4
𝑇𝑇𝑇𝑇����).” We concluded that in future classes, the second author would ask half of her 

students (working in pairs) to construct 𝐹𝐹𝐹𝐹���� so that 4𝐹𝐹𝐹𝐹���� ≅ 𝑇𝑇𝑇𝑇���� and the other half of students (also working in 
pairs) to construct 𝐹𝐹𝐹𝐹���� so that 𝐹𝐹𝐹𝐹���� ≅ 1

4
𝑇𝑇𝑇𝑇����. Once these constructions are completed, the whole class would be 

asked to compare these two constructions in terms of their “ease of construction” and similarity of results.  
Some of the angle constructions that students are requested to complete are illustrated in Figure 2. Note again 

that students’ constructions are completed on a separate sheet of paper and these constructions comprise part of 
the second 45-minute class period. 

 
1. Construct ∠𝐷𝐷 so that ∠𝐷𝐷 ≅ ∠𝐶𝐶. 

 
2. Construct ∠𝐹𝐹 so that 𝑚𝑚∠𝐹𝐹 ≅ 2𝑚𝑚∠𝐶𝐶. 

 
3. Construct ∠𝐴𝐴 so that 𝑚𝑚∠𝐴𝐴 ≅ 𝑚𝑚∠1+ 𝑚𝑚∠2. 

 
4. Construct ∠𝐷𝐷 so that 𝑚𝑚∠𝐷𝐷 ≅ 𝑚𝑚∠1−𝑚𝑚∠2. 

 
Figure 2. Angle Constructions 

C 

1 2 
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As with the line segment constructions, students are prompted to share their thinking and reasoning, critique 
the thinking of others (including the teacher’s), and use appropriate terminology throughout the angle 
constructions.  Students again typically extend the activity by formulating their own problems for one another such 
as: 

• “Describe how to construct an angle H so that the measure of angle H is congruent to the difference 
of the measure of angle 1 and the measure of angle C”; that is, describe how to construct ∠𝐻𝐻 so that 
𝑚𝑚∠𝐻𝐻 ≅ 𝑚𝑚∠1 −𝑚𝑚∠𝐶𝐶. 

• “Describe how to construct an angle G so that the sum of the measure of angle G and the measure of 
angle C is congruent to the measure of angle 1”; that is, describe the construction of ∠𝐹𝐹 so that 
𝑚𝑚∠𝐹𝐹 + 𝑚𝑚∠𝐶𝐶 ≅ 𝑚𝑚∠1. 

As with the student-formulated line segment construction questions, the second author always allows time for 
students to complete some of these angle construction extension questions. Furthermore, as with the difference 
of line segments problem—where the second line segment (subtrahend) is longer than the first line segment 
(minuend)—students frequently question whether the construction 𝑚𝑚∠2−𝑚𝑚∠1 is possible. The second author 
provides students with time to address this question and promotes the idea that the difference is given by 
|𝑚𝑚∠2−𝑚𝑚∠1| (Larson and Boswell, 2019a, p. 39). However, the second author also asserts (to her students) that 
although the definition of angle measurement does not support the concept of a negative angle, it is frequently 
useful (e.g., Trigonometry) to impose a convention so that the measure of an “angles is positive when the rotation 
of its terminal side is counterclockwise and negative when the rotation is clockwise” (Larson and Boswell, 2019b, 
p. 470).  

One of the last constructions that students are asked to create during the second 45-minute class period states: 

Construct the perpendicular bisector of 𝑋𝑋𝑋𝑋���� [a given segment]. Then bisect one of the right angles. 
Measure it with your protractor to check that it is a 45° angle and that your point of intersection divides 
𝑋𝑋𝑋𝑋 ����� into two congruent segments.  

This problem requires that students incorporate two major concepts of construction: perpendicular and angle 
bisector. Class discussions related to congruent segments and 45° angles reinforces the definitions of midpoints, 
angle and segment bisectors, and perpendicular bisectors. Such engagement using hands-on tools and reflective 
discourse promotes student development of key understandings in geometry and supports geometric reasoning. 
After completing this last problem, the second author returns to the angle construction activity (Figure 2), where 
she poses the following questions: 

• “Describe how the construction of ∠𝐹𝐹 so that m∠𝐹𝐹 ≅ 2𝑚𝑚∠𝐶𝐶 is related to showing ∠𝐶𝐶 is the angle 
bisector of ∠𝐹𝐹.” 

• “Determine n so that 𝑛𝑛 ∙ 𝑚𝑚∠𝐶𝐶 ≅ 𝑚𝑚∠1.” 
This last question involves students making conjectures and attempting to determine n using straightedge and 

compass via trial and error and inductive reasoning, where, by inductive reasoning, we mean reasoning which 
places “emphasis on discovering patterns, interpreting information to make generalisations, and making analyses 
by finding similarities, differences and relations between the attributes” (Misrom et al., 2020, p. 159). This last 
question further provides students with out-of-class work, as the second author requests that students attempt to 
solve the problem in pairs or in groups of three. 

CULMINATING CONSTRUCTION ACTIVITY 

When finished with the first two 45-minute class periods (i.e., the first two activities), the second author gives 
her students an assignment that requires them to figure out how to replicate given constructions, such as an eight-
petaled rose (based on an octagon) and a 12-pointed flower. Students are required to make their constructions 
larger than the given diagrams, making it impossible to simply copy the originals. Students use their straightedge 
and compass along with the understandings and skills they developed in prior lessons and the current sequence of 
activities to create these new objects. Finally, students are encouraged to color their constructions to enhance their 
aesthetic beauty.   

There are no instructions provided for how to make their construction; rather, students are asked to problem 
solve and use inductive reasoning in order to create aesthetically pleasing constructions as illustrated in Figure 3. 
To determine whether an object or item is “aesthetically pleasing,” students are asked to focus on critical features 
that contribute to aesthetic pleasure, such as “symmetry, balance, proportion, complexity, and so on” (Blijlevens 
et al., 2014, p. 101). Sample student work is shown in Figure 3. 
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The eight-petaled rose is created by first constructing an octagon with straightedge and compass. Once students 
construct the eight points of the octagon, they use inductive reasoning to adjust their compass setting to obtain 
the small, medium, and large eight-petaled roses. For the 12-petaled flower construction, students first construct 
the six-petaled flower using their compass and the radius of a circle to create six evenly spaced arcs and points 
around the circle. Next, students continue using their compass and the same radius to construct six additional 
evenly spaced arcs and points around the circle. This results in the 12-petaled flower. 

 Near the end of the third day, the second author takes pictures of each construction and uploads these images 
to her students’ Chromebooks. Once each student has the image of their construction uploaded to their 
Chromebook, students use their constructions to decorate the classroom with beautiful artwork (see Figure 4).  

 Hereafter, this artwork serves as a focus of discourse during parent-teacher conferences and subsequent 
classes.  

ENHANCING STUDENTS’ GEOMETRIC REASONING 

 During the fourth and last day of the lesson, the second author integrates GeoGebra’s geometry application 
into the lesson. GeoGebra is a free interactive geometry, algebra, statistics and calculus application, available on 
multiple platforms and in over 25 languages, and a tool the second author’s students regularly utilize throughout 
the school year. Once students have inserted their image into GeoGebra’s interactive geometry environment using 
GeoGebra’s image tool, the second author discusses selected elements of art, principles of design, and relevant 
vocabulary to help her students describe and analyze their constructions. Specifically, students are asked to think 
about line, shape, form, and color, and examine balance (i.e., symmetrical, asymmetrical, radial), pattern, and 
proportion in their constructions. As described by Esaak (2020), artists may signify a pattern using color, by 

 
Figure 3. Eight-Petaled Rose (left image) and 12-Pointed Flower (right image) Constructions 

 
Figure 4. Geometric Artwork 
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“repeating a single or select palette of colors throughout a work” (para. 6), or by using lines, shapes, tones, textures 
and forms (MacTaggert, n.d.). Symmetry (or symmetrical balance) means that “the work of art is the same on one 
side as the other, a mirror image of itself, on both sides of a center line” (Issaquah Schools Foundation, 2021, para. 
2). Conversely, asymmetry (or asymmetrical balance) means that “the two halves of the work of art are different, 
however . . . there will be elements that interact in a way that makes each side equally important” (Issaquah Schools 
Foundation, 2021, para. 3). Finally, radial symmetry means “the weight of the image or form radiates from a center 
point” (Issaquah Schools Foundation, 2021, para. 3). 

The final activity involves students developing and analyzing hypotheses regarding their individual 
constructions, the constructions of two of their classmates, and sharing and discussing their results. Such actions 
support the integration of geometric constructions, digital technology, elements of art, and principles of design to 
enhance students’ geometric reasoning. For example, one of the student’s constructions, illustrated in Figure 5, is 
analyzed using several GeoGebra tools (e.g., point, segment, perpendicular line, and angle measure).  

The seven elements of art (i.e., color, form, line, shape, space, texture, and value) are the “building blocks used 
by artists to create a work of art” (J. Paul Getty Museum, 2011a, p. 1). According to the second author, students 
typically describe and discuss the lines in their own and their classmates’ constructions by focusing on the existence 
and placement of vertical, horizontal, diagonal, straight, and curved lines. Students also discuss form and whether 
an object has width. Finally, students typically focus on each object’s colors including the name of the color used 
(i.e., hue), and how light or dark the colors are (i.e., value). Sample student responses include: 

• “The contrast between the light and dark blues and the grey really make the smallest eight-petaled 
flower pop out in the drawing” (image on left in Figure 3). 

• “I really like how the width of the grey overlapping petals is larger than the width of the light blue 
petals, which, in turn, is larger than the width of the dark blue petals” (image on left in Figure 3). 

• “I wish the contrast between the red flower and the orange circle was greater, because it was challenging 
for me to see the inner flower” (image on right in Figure 3). 

According to the J. Paul Getty Museum (2011b), the principles of design “describe the ways that artists use the 
elements of art in a work of art” (p. 2) and are comprised of balance, emphasis, movement, pattern, repetition, 
proportion, rhythm, unity, and variety. According to the second author, students typically discuss ideas of balance, 
including whether an object has symmetry or radial symmetry. Sample student responses include: 

• “The color contrast between the red, orange, and yellow really makes the figure radiate outward from 
the center of the drawing” (image on right in Figure 3). 

• “I think the repeating dark blue-light blue-green-yellow pattern the figure displays on each outer petal 
is very calming” (image on right in Figure 3). 

• “I really thought the proportion of petal length to petal width between the grey petals and the light 
blue petals was going to be a whole number, like the light blue petal [i.e., petal length to width = 2.9/1.1 
= 2.6] proportion was going to be twice as large as the grey petal [i.e., petal length to width = 3.7/2.6 
= 1.4] proportion” (Figure 5). 

 
Figure 5. Examining the Geometric-Artistic Constructions in GeoGebra 
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• “Although GeoGebra’s measurement tool indicated the small, dark blue petals occurred every 45°, 
which is what I expected, the light blue petals did not follow the same pattern, occurring every 44° or 
46°. I must have been off somewhere in my construction” (Figure 5). 

Though challenging, students find this sequence of activities to be very interesting and enjoyable. Through their 
engagement in the sequence of activities, students develop a sense of satisfaction and an understanding of the 
connections between geometry and art. 

DISCUSSION AND CONCLUSION 

The work that students do with geometric tools (such as compass and straightedge) helps them develop an 
understanding of significant geometric connections. Such connections, in turn, supports students’ capacities to 
prove and problem solve. When students learn a geometric concept that is not coherent, that is, connected to 
nothing but a theorem in a book, sentences in their notes, or statements made by their teacher, they are not able 
to provide meaning to that theorem. In the preceding sections, we described a sequence of activities that integrated 
geometric constructions, digital technology, elements of art, and principles of design to enhance students’ 
geometric reasoning. More specifically, we demonstrated how students analyzed characteristics and properties of 
two-dimensional geometric shapes, developed mathematical arguments about geometric relationships, used 
symmetry to analyze mathematical situations, and used visualization to solve problems. 

Several authors have developed and utilized such tools or rubrics (e.g., Isaacson, 2012; Loong et al., 2018; Pegg 
et al., 1998) and these existing rubrics served as a starting point in our discussions for determining how best to 
capture and measure these notions. Ayuningtyas et al. (2019) developed assessment criteria for geometric reasoning 
based on five indicators (p. 4): observe pattern or regularity; formulate generalization and conjecture related with 
regularity observed; assess/test the conjecture; construct and assess mathematical argument; and describe/validate 
logical conclusion about some ideas and its relatedness. Burger (2013) developed a series of rubrics for use as part 
of a project in college-level Geometry that focuses on five criteria: accuracy, neatness, creativity, effort, and meeting 
deadlines/fallowing directions. Finally, Rajdl (2014) designed a five-point art rubric that incorporates the elements 
of art and principles of design. We are currently working to integrate these three rubrics into one instrument that 
would allow teachers to practicably capture and assess students’ capacity to reason in geometry, accurately 
construction objects with straightedge and compass, and understand and incorporate elements of art and principles 
of design. 

In addition to the lack of an instrument to measure students’ understandings and skills, study limitations also 
included the small student sample, and the lack of video recordings or transcriptions of classroom discussions. 
The National Council for Teachers of Mathematics has long encouraged math teachers to “develop multiple 
representations and connections, and construct meanings from new situations” (NCTM, 1989, p. 125). The 
sequence of activities described in this article, implemented through a STEAM approach that focuses on the 
benefits of integrated learning (Liao, 2019), provide students with opportunities to develop such meanings and 
connections in the context of creating artistic geometric constructions. 
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