Abstract
Artificial Intelligence (AI) is rapidly reshaping educational systems worldwide, raising critical debates about the reliability of AI-generated content, the validity of AI-driven assessments, and the ethical implications of its integration into diverse learning environments. This study examines the integrity of AI-enhanced education within the ASEAN region by focusing on three core dimensions: content accuracy, assessment validity, and ethical challenges. Data were collected from 661 respondents, including educators, policymakers, and technology providers, during the ASEAN Stakeholder Summit 2024 through a cross-sectional survey design. To interrogate the data, Chi-Square Tests of Independence were used to explore associations between categorical variables such as gender and ethical concerns, while ANOVA assessed differences in perceptions of AI-driven assessments across ASEAN member states. Correlation analysis further investigated relationships between respondent demographics and perceptions of AI accuracy, offering a nuanced view of stakeholder trust in AI-enabled practices. Findings indicate that while AI holds transformative potential for education, its deployment must be accompanied by region-specific guidelines, rigorous ethical safeguards, and multi-stakeholder collaboration. Such measures are essential to ensure that AI-driven education is both culturally relevant and socio-economically equitable, supporting responsible and sustainable implementation across the ASEAN context.
- Adaga, E. M., Egieya, Z. E., Ewuga, S. K., Abdul, A. A., and Abrahams, T. O. (2024). Philosophy in business analytics: a review of sustainable and ethical approaches. International Journal of Management & Entrepreneurship Research, 6(1), 69–86. https://doi.org/10.51594/IJMER.V6I1.710
- Adams, M. A., and Conway, T. L. (2021). Eta Squared. Encyclopaedia of Quality of Life and Well-Being Research, 1–2. https://doi.org/10.1007/978-3-319-69909-7_918-2
- Ali, E. P. S. E., Ndubuisi, O. G., Obiorah, C. A. R., Aku, E. U. T., Nesiama, O., Agbakhamen, E. C. O., and Okoro, E. O. P. (2025). Ethical standards in research: A professional imperative. International Journal of Innovative Scientific & Engineering Technologies Research, 13(1), 94–104. https://doi.org/10.5281/zenodo.14875237
- Alsharif, A. (2025). Artificial Intelligence and the Future of Assessment: Opportunities for Scalable, Fair, and Real-Time Evaluation. Libyan Journal of Educational Research and E-Learning (LJERE), 42–52. Available at: https://ljere.com.ly/index.php/ljere/article/view/5
- Amanbekqyzy, A. A., Serikovna, N. A., and Erlanovna, A. A. (2024). AI-Enhanced Educational Content Creation. Endless Light in Science, 5(3), 9–11. Available at: https://cyberleninka.ru/article/n/ai-enhanced-educational-content-creation
- Amoozadeh, M., Daniels, D., Nam, D., Kumar, A., Chen, S., Hilton, M., Ragavan, S. S., and Alipour, M. A. (2024). Trust in generative AI among students: An exploratory study, in Proceedings of the 55th ACM Technical Symposium on Computer Science Education, SIGCSE 2024, 20–23 March 2024. Portland, OR: ACM, 67–73. https://doi.org/10.1145/3626252.3630842
- Association of Southeast Asian Nations (ASEAN). (2024). ASEAN guide on AI governance and ethics.
- Available at: https://asean.org/wp-content/uploads/2024/02/ASEAN-Guide-on-AI-Governance-and-Ethics_beautified_201223_v2.pdf
- Aschbrenner, K. A., Kruse, G., Gallo, J. J., and Plano Clark, V. L. (2022). Applying mixed methods to pilot feasibility studies to inform intervention trials. Pilot and Feasibility Studies, 8(1), 1–13. https://doi.org/10.1186/s40814-022-01178-x
- Badmus, O. T., Jita, T., and Jita, L. C. (2024). Exploring Undergraduates’ Underachievement in Science Technology Engineering and Mathematics: Opportunity and Access for Sustainability. European Journal of STEM Education, 9(1), 10. https://doi.org/10.20897/ejsteme/14741
- Baek, T. H., and Kim, M. (2023). Is ChatGPT scary good? How user motivations affect creepiness and trust in generative artificial intelligence. Telematics and Informatics, 83, 102030. https://doi.org/10.1016/j.tele.2023.102030
- Bulut, O, Beiting-Parrish, M., Casabianca, J. M., Slater, S. C., Jiao, H., Song, D., Ormerod, C., Fabiyi, D. G., Ivan, R., Walsh, C., Rios, O., Wilson, J., Yildirim-Erbasli, S. N., Wongvorachan, T., Liu, J. X., Tan, B., and Morilova, P. (2024). The Rise of Artificial Intelligence in Educational Measurement: Opportunities and Ethical Challenges. Chinese/English Journal of Educational Measurement and Evaluation, 5(3), 3. https://doi.org/10.59863/MIQL7785
- Carey, E. G., Ridler, I., Ford, T. J., and Stringaris, A. (2023). Editorial Perspective: When is a “small effect” actually large and impactful? Journal of Child Psychology and Psychiatry, and Allied Disciplines, 64(11), 1643–1647. https://doi.org/10.1111/jcpp.13817
- Chandramma, R., Babu, K. S., Ranjith, K. S., Sinha, A. K., Neerugatti, V., and Reddy, D. S. (2025). Enhancing e-learning accessibility through AI and inclusive design, in Proceedings of the 6th International Conference on Mobile Computing and Sustainable Informatics, ICMCSI 2025, 7–8 January 2025. Goathgaun, Nepal: IEEE, 1466–1471. https://doi.org/10.1109/ICMCSI64620.2025.10883148
- Chaparro-Banegas, N., Mas-Tur, A., and Roig-Tierno, N. (2024). Challenging critical thinking in education: New paradigms of artificial intelligence. Cogent Education, 11(1), 2437899. https://doi.org/10.1080/2331186X.2024.2437899
- Chen, W.-H., Uribe, M. C., Kwon, E. E., Lin, K.-Y. A., Park, Y.-K., Ding, L., and Saw, L. H. (2022). A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). Renewable and Sustainable Energy Reviews, 169, 112917. https://doi.org/10.1016/j.rser.2022.112917
- Chimbga, B. (2023). Exploring the ethical and societal concerns of generative AI in Internet of Things (IoT) environments, in Pillay, A., Jembere, E. and Gerber, A. J. (eds), Artificial Intelligence Research: Proceedings of SACAIR 2023, 4–6 December 2023. Pretoria, South Africa: Springer, 44–56. https://doi.org/10.1007/978-3-031-49002-6_4
- Chinta, S. V., Wang, Z., Yin, Z., Hoang, N., Gonzalez, M., Quy, T. L., and Zhang, W. (2024). FairAIED: Navigating Fairness, Bias, and Ethics in Educational AI Applications. ArXiv. https://doi.org/10.48550/arXiv.2407.18745
- Correll, J., Mellinger, C., and Pedersen, E. J. (2022). Flexible approaches for estimating partial eta squared in mixed-effects models with crossed random factors. Behaviour Research Methods, 54(4), 1626–1642. https://doi.org/10.3758/S13428-021-01687-2
- Cvetkovic-Vega, A., Maguiña, J. L., Soto, A., Lama-Valdivia, J., and Correa López, L. E. (2021). Cross-sectional studies. Revista de La Facultad de Medicina Humana, 21(1), 179–185. https://doi.org/10.25176/RFMH.V21I1.3069
- Daneshjou, R., Smith, M. P., Sun, M. D., Rotemberg, V., and Zou, J. (2021). Lack of Transparency and Potential Bias in Artificial Intelligence Data Sets and Algorithms: A Scoping Review. JAMA Dermatology, 157(11), 1362–1369. https://doi.org/10.1001/jamadermatol.2021.3129
- Dankel, S. J., and Loenneke, J. P. (2021). Effect sizes for paired data should use the change score variability rather than the pre-test variability. Journal of Strength & Conditioning Research, 35(6), 1773–1778. https://doi.org/10.1519/JSC.0000000000002946
- Duan, W., McNeese, N., and Li, L. (2025). Gender stereotypes toward non-gendered generative AI: The role of gendered expertise and gendered linguistic cues. Proceedings of the ACM on Human-Computer Interaction, 9(1), 35. https://doi.org/10.1145/3701197
- Dugard, P., Todman, J., and Staines, H. (2022). Analysis of variance (ANOVA), in Approaching multivariate analysis: A practical introduction (pp. 13–54). London: Routledge. https://doi.org/10.4324/9781003343097-2
- Dunn, A. G., Shih, I., Ayre, J., and Spallek, H. (2023). What generative AI means for trust in health communications. Journal of Communication in Healthcare, 16(4), 385–388. https://doi.org/10.1080/17538068.2023.2277489
- Elangovan, N. and Sundaravel, E. (2021). Method of preparing a document for survey instrument validation by experts. MethodsX, 8, 101326. https://doi.org/10.1016/J.MEX.2021.101326
- Ferrara, E. (2024). Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies. Sci, 6(1), 3. https://doi.org/10.3390/sci6010003
- Flake, J. K., Davidson, I. J., Wong, O., and Pek, J. (2022). Construct validity and the validity of replication studies: A systematic review. American Psychologist, 77(4), 576–588. https://doi.org/10.1037/AMP0001006
- Forero, C. G. (2023). Cronbach’s alpha, in Encyclopaedia of quality of life and well-being research (pp. 1505–1507). Cham: Springer. https://doi.org/10.1007/978-3-031-17299-1_622
- Franzke, A. S., Muis, I., and Schäfer, M. T. (2021). Data Ethics Decision Aid (DEDA): a dialogical framework for ethical inquiry of AI and data projects in the Netherlands. Ethics and Information Technology, 23(3), 551–567. https://doi.org/10.1007/S10676-020-09577-5
- Freeman, R. E. (1984). Strategic management: A stakeholder approach. Boston: Pitman.
- Frosio, G. (2025). Should we ban generative AI, incentivize it or make it a medium for inclusive creativity? In A research agenda for EU copyright law (pp. 61–86). Cheltenham: Edward Elgar Publishing. https://doi.org/10.4337/9781803927329.00010
- Ghanad, A. (2023). An overview of quantitative research methods. International Journal of Multidisciplinary Research and Analysis, 6(8), 3794–3803. https://doi.org/10.47191/IJMRA/V6-I8-52
- Ghosh, S., Venkit, P. N., Gautam, S., Wilson, S., and Caliskan, A. (2024). Do generative AI models output harm while representing non-Western cultures: Evidence from a community-centered approach, in Proceedings of the AAAI/ACM conference on AI, ethics, and society, 21–23 October 2024. San Jose, CA: AAAI Press. https://doi.org/10.1609/aies.v7i1.31651
- Globig, L. K., Xu, R., Rathje, S. and Van Bavel, J. J. (2024). Perceived (Mis)alignment in generative Artificial Intelligence Varies Across Cultures. https://doi.org/10.31234/OSF.IO/SUQA2
- Golda, A., Mekonen, K., Pandey, A., Singh, A., Hassija, V., Chamola, V., and Sikdar, B. (2024). Privacy and security concerns in generative AI: A comprehensive survey. IEEE Access, 12, 48126–48144. https://doi.org/10.1109/ACCESS.2024.3381611
- Hamdan, A., Singh, A. D., Kovilpillai, J. J. S., Kamsin, I. F., Suriyarangsun, C., Brahmawong, W., Phanphai, P., and Aggarwal, S. (2024). The Digitally Intelligent Girls (DI-Girls) initiative’s potential, pitfalls, and prospects. International Journal of Academic Research in Progressive Education and Development, 13(1), 1123–1135. https://doi.org/10.6007/IJARPED/V13-I1/19396
- Hamid, A. A. (2024). Ethical standards for scientific research using the internet. Al-Noor Journal for Digital Media Studies, 1(0), 14–31. https://doi.org/10.69513/jnfdms.v.1.i.0.en.1
- Hasan, N., Rana, R. U., Chowdhury, S., Dola, A. J., and Rony, M. K. K. (2021). Ethical considerations in research. Journal of Nursing Research, Patient Safety and Practice, 1(01), 1–4. https://doi.org/10.55529/JNRPSP11.1.4
- Hofstede, G. and Bond, M. H. (1988). The Confucius connection: From cultural roots to economic growth. Organizational Dynamics, 16(4), 5–21. https://doi.org/10.1016/0090-2616(88)90009-5
- Hossan, D., Mansor, Z. D., and Jaharuddin, N. S. (2023). Research population and sampling in quantitative study. International Journal of Business and Technopreneurship (IJBT), 13(3), 209–222. https://doi.org/10.58915/IJBT.V13I3.263
- Huang, L. (2023). Ethics of artificial intelligence in education: Student privacy and data protection. Science Insights Education Frontiers, 16(2), 2577–2587. https://doi.org/10.15354/SIEF.23.RE202
- Iacobucci, D., Popovich, D. L., Moon, S., and Román, S. (2023). How to calculate, use, and report variance explained effect size indices and not die trying. Journal of Consumer Psychology, 33(1), 45–61. https://doi.org/10.1002/JCPY.1292
- Iliyasu, R., and Etikan, I. (2021). Comparison of quota sampling and stratified random sampling. Biometrics & Biostatistics International Journal Review, 10(1), 24–27. https://doi.org/10.15406/BBIJ.2021.10.00326
- Janse, R. J., Hoekstra, T., Jager, K. J., Zoccali, C., Tripepi, G., Dekker, F. W., and Van Diepen, M. (2021). Conducting correlation analysis: important limitations and pitfalls. Clinical Kidney Journal, 14(11), 2332–2337. https://doi.org/10.1093/CKJ/SFAB085
- Khazanchi, R., and Khazanchi, P. (2024). Generative AI to improve special education teacher preparation for inclusive classrooms, in Searson, M., Langran, E. and Trumble, J. (eds), Exploring new horizons: Generative artificial intelligence and teacher education(pp. 159–177). Waynesville, NC: Association for the Advancement of Computing in Education. Available at: https://www.learntechlib.org/primary/p/223928/
- Kim, J. H., Kim, J., Kim, C., and Kim, S. (2023). Do you trust ChatGPTs? Effects of the ethical and quality issues of generative AI on travel decisions. Journal of Travel & Tourism Marketing, 40(9), 779–801. https://doi.org/10.1080/10548408.2023.2293006
- Kovilpillai, J. J. S., Singh, A. D., Hamdan, A., McKenna, K., and Raza, F. A. (2025). AI-Enhanced Micro-Credentials for Efficiency and Accessibility: Using Gen-AI to Improve the Design, Development, and Delivery of Micro-Credentials. In The Rise of Micro-Credentials: A New Certification System for Career Development (pp. 153–194). IGI Global. https://doi.org/10.4018/979-8-3693-5488-9.CH008
- Kusmaryono, I., Wijayanti, D., and Maharani, H. R. (2022). Number of response options, reliability, validity, and potential bias in the use of the Likert scale in education and social science research: A literature review. International Journal of Educational Methodology, 8(4), 625–637. https://doi.org/10.12973/ijem.8.4.625
- Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J., and Kim, H. (2024). Few-shot is enough: Exploring ChatGPT prompt engineering method for automatic question generation in English education. Education and Information Technologies, 29(9), 11483–11515. https://doi.org/10.1007/S10639-023-12249-8
- Leslie, D., Rincón, C., Briggs, M., Perini, A., Jayadeva, S., Borda, A., Bennett, S., Burr, C., Aitken, M., Katell, M., Fischer, C., Wong, J., and Garcia, I. K. (2023). AI Fairness in Practice. The Alan Turing Institute. https://doi.org/10.5281/zenodo.10680527
- Liang, W., Tadesse, G. A., Ho, D., Fei-Fei, L., Zaharia, M., Zhang, C., and Zou, J. (2022). Advances, challenges and opportunities in creating data for trustworthy AI. Nature Machine Intelligence, 4(8), 669–677. https://doi.org/10.1038/s42256-022-00516-1
- Liaw, S.T., Guo, J. G. N., Ansari, S., Jonnagaddala, J., Godinho, M. A., Borelli Jr, A. J., de Lusignan, S., Capurro, D., Liyanage, H., Bhattal, N., Bennett, V., Chan, J., and Kahn, M. G. (2021). Quality assessment of real-world data repositories across the data life cycle: A literature review. Journal of the American Medical Informatics Association, 28(7), 1591–1599. https://doi.org/10.1093/JAMIA/OCAA340
- Lim, W. M. (2024). A typology of validity: Content, face, convergent, discriminant, nomological, and predictive validity. Journal of Trade Science, 12(3), 155–179. https://doi.org/10.1108/JTS-03-2024-0016
- Lovakov, A., and Agadullina, E. R. (2021). Empirically derived guidelines for effect size interpretation in social psychology. European Journal of Social Psychology, 51(3), 485–504. https://doi.org/10.1002/ejsp.2752
- Maier, C., Thatcher, J. B., Grover, V., and Dwivedi, Y. K. (2023). Cross-sectional research: A critical perspective, use cases, and recommendations for IS research. International Journal of Information Management, 70, 102625. https://doi.org/10.1016/J.IJINFOMGT.2023.102625
- Makwana, D., Engineer, P., Dabhi, A., and Chudasama, H. (2023). Sampling methods in research: A review. International Journal of Trend in Scientific Research and Development, 7(3), 762–768. Available at: https://www.ijtsrd.com/papers/ijtsrd57470.pdf
- Miao, F., Holmes, W., Huang, R., and Zhang, H. (2021). AI and education: Guidance for policy-makers. Paris, France: UNESCO. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000376709
- Nag, B. (2025). The evolution of ethical standards and guidelines in AI. In Responsible Implementations of Generative AI for Multidisciplinary Use (pp. 45–84). IGI Global. Available at: https://www.igi-global.com/chapter/the-evolution-of-ethical-standards-and-guidelines-in-ai/357135
- Nanda, A., Mohapatra, Dr. B. B., Mahapatra, A. P. K., Mahapatra, A. P. K., and Mahapatra, A. P. K. (2021). Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. International Journal of Statistics and Applied Mathematics, 6(1), 59–65. https://doi.org/10.22271/MATHS.2021.V6.I1A.636
- Nivedhaa, N. (2024). A comprehensive review of AI’s dependence on data. International Journal of Artificial Intelligence and Data Science (IJADS), 1(1), 1–11. Available at: https://iaeme.com/MasterAdmin/Journal_uploads/IJADS/VOLUME_1_ISSUE_1/IJADS_01_01_001.pdf
- Nixon, N., Lin, Y., and Snow, L. (2024). Catalysing equity in STEM teams: Harnessing generative AI for inclusion and diversity. Policy Insights from the Behavioural and Brain Sciences, 11(1), 85–92. https://doi.org/10.1177/237273222312203
- Novak, K. (2025). A comparison of the appropriateness of various internal consistency coefficients––an alternative to Cronbach’s alpha (PhD thesis). University of Zagreb, Faculty of Humanities and Social Sciences. Available at: https://repozitorij.unizg.hr/islandora/object/ffzg:12566
- Ong, G. H., Krishnan, S., and Reston, E. (2024). Investigating Determinants of STEM Major Choice Among Malaysian Undergraduates. European Journal of STEM Education, 9(1), 17. https://doi.org/10.20897/ejsteme/15668
- Organisation for Economic Co-operation and Development. (2024). The potential impact of Artificial Intelligence on equity and inclusion in education. Available at: https://www.oecd.org/education/the-potential-impact-of-artificial-intelligence-on-equity-and-inclusion-in-education_0d7e9e00.pdf
- Pechenkina, E. (2023). Artificial intelligence for good? Challenges and possibilities of AI in higher education from a data justice perspective. In Higher Education for Good: Teaching and Learning Futures (pp. 239–266). Cambridge, UK: Open Book Publishers. https://doi.org/10.11647/OBP.0363.09
- Purvis, A. J. and Crawford, J. (2024). Ethical Standards in Social Science Publications. Journal of University Teaching and Learning Practice, 21(09). https://doi.org/10.53761/HQNQR710
- Rahman, M. M., Tabash, M. I., Salamzadeh, A., Abduli, S., and Rahaman, M. S. (2022). Sampling techniques (probability) for quantitative social science researchers: A conceptual guidelines with examples. SEEU Review, 17(1), 42–51. https://doi.org/10.2478/SEEUR-2022-0023
- Rajaratnam, V., Dong, C., Singh, A., Kovilpillai, J. J. S., Raza, F. A., and Tan, S. (2024). AI-Powered Education: Navigating the Future of Learning Design. Available at: https://www.researchgate.net/publication/386026854_AI_-_POWERED_EDUCATION_NAVIGATING_THE_FUTURE_OF_LEARNING_DESIGN
- Rana, J., Gutiérrez, P. L., and Oldroyd, J. C. (2022). Quantitative methods. In A. Farazmand (Ed.), Global Encyclopaedia of Public Administration, Public Policy, and Governance (pp. 11202–11207). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-66252-3_460
- Raza, F. A., and Singh, A. D. (2024a). Unveiling the missing link: Women in STEM leadership – A comprehensive review. In International Journal of Advanced Business Studies, 3 (special issue), 15–27. https://doi.org/10.59857/IJABS.1109
- Raza, F. A., and Singh, A. D. (2024b, May). Best practices in developing gender inclusive curriculum and pedagogy: A literature review. In Proceedings of the International Conference on Curriculum and Educational Instruction (APROCEI) 17 May. Kuala Lumpur, Malaysia. Available at: https://anyflip.com/vvtwe/bkuy/basic
- Raza, F. A., Singh, A. D., Kovilpillai, J. J. S., and Hamdan, A. (2024). Gender gaps and convergence: ASEAN stakeholder perspectives on artificial intelligence in education. Journal of Research in Gender Studies, 14(2), 38–50. https://doi.org/10.22381/JRGS14220242
- Salleh, K. M., Sulaiman, N. L., and Gloeckner, G. (2023). Exploring test concept and measurement through validity and reliability process in TVET research: Guideline for the novice researcher. Journal of Technical Education and Training, 15(1), 257–264. https://doi.org/10.30880/JTET.2023.15.01.022
- Sandhu, R., Channi, H. K., Ghai, D., Cheema, G. S., and Kaur, M. (2024). An introduction to generative AI tools for education 2030. Integrating Generative AI in Education to Achieve Sustainable Development Goals, 1–28. https://doi.org/10.4018/979-8-3693-2440-0.CH001
- Scior, K., Hamid, A., and Dixon, A. (2024). Ethical Standards Guide. New York, NY: UN Women. Available at: https://discovery.ucl.ac.uk/id/eprint/10196754/
- Shen, C., Panda, S., and Vogelstein, J. T. (2022). The Chi-Square Test of Distance Correlation. Journal of Computational and Graphical Statistics: A Joint Publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America, 31(1), 254–262. https://doi.org/10.1080/10618600.2021.1938585
- Shwedeh, F., Salloum, S. A., Aburayya, A., Fatin, B., Elbadawi, M. A., Al Ghurabli, Z., and Al Dabbagh, T. (2024). AI Adoption and Educational Sustainability in Higher Education in the UAE. Artificial Intelligence in Education: The Power and Dangers of ChatGPT in the Classroom, 144, 201–229. https://doi.org/10.1007/978-3-031-52280-2_14
- Singh, S., and Mahadevan, A. (2022, June). Employing blockchain and machine learning for monitoring the accumulation and dispensation of COVID-19 vaccine. In International Conference on Signal & Data Processing (pp. 405–418). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-1410-4_34
- Sriram, V., Conard, A. M., Rosenberg, I., Kim, D., Saponas, T. S., and Hall, A. K. (2025). Addressing biomedical data challenges and opportunities to inform a large-scale data lifecycle for enhanced data sharing, interoperability, analysis, and collaboration across stakeholders. Scientific Reports, 15(1), 6291. https://doi.org/10.1038/s41598-025-90453-x
- Stephanidis, C. (2023). Paradigm shifts towards an inclusive society: From the desktop to human-centered artificial intelligence, in Proceedings of the 2nd International Conference of the ACM Greek SIGCHI Chapter, September 2023. Athens, Greece: ACM. (pp. 1–4). https://doi.org/10.1145/3609987.3610109.
- Tanujaya, B., Prahmana, R. C. I., and Mumu, J. (2022). Likert scale in social sciences research: Problems and difficulties. FWU Journal of Social Sciences, 16(4), 89–101. Available at: https://ojs.sbbwu.edu.pk/fwu-journal/index.php/ojss/article/view/871
- Taylor, Z. (2024). Using Chat GPT to Clean Qualitative Interview Transcriptions: A Usability and Feasibility Analysis. American Journal of Qualitative Research, 8(2), 153-160. https://doi.org/10.29333/ajqr/14487
- Teresi, J. A., Yu, X., Stewart, A. L., and Hays, R. D. (2022). Guidelines for designing and evaluating feasibility pilot studies. Medical Care, 60(1), 95–103. https://doi.org/10.1097/MLR.0000000000001664
- Triandis, H. C. (1995). Individualism and collectivism. Boulder: Westview Press.
- Triana, Y. (2025). Improving Linguistics Skill on EFL Students Using Learning Management System: A Critical Literature Review. Journal of Ethnic and Cultural Studies, 12(3), 199–223. https://doi.org/10.29333/ejecs/1864
- Trust, T., Whalen, J., and Mouza, C. (2023). Editorial: ChatGPT: Challenges, opportunities, and implications for teacher education. Contemporary Issues in Technology and Teacher Education, 23(1), 1–23. Available at: https://www.learntechlib.org/p/222408
- Uddagiri, C., and Isunuri, B. V. (2024). Ethical and Privacy Challenges of Generative AI. Studies in Computational Intelligence, 1177, 219–244. https://doi.org/10.1007/978-981-97-8460-8_11
- Valentini, A. and Blancas, A. (2025). The challenges of AI in higher education and institutional responses: Is there room for competency frameworks? IESALC Working papers, 12(10). Available at: https://unesdoc.unesco.org/ark:/48223/pf0000394935
- Vis, B., and Stolwijk, S. (2021). Conducting quantitative studies with the participation of political elites: Best practices for designing the study and soliciting the participation of political elites. Quality & Quantity, 55(4), 1281–1317. https://doi.org/10.1007/s11135-020-01052-z
- Wang, T. (2023). Empowering minds: A round table on Generative AI and Education in Asia-Pacific [Commissioned report]. Paris, France: United Nations Educational, Scientific and Cultural Organization. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000388367
- Wang, Z., Chai, C. S., Li, J., and Lee, V. W. Y. (2025). Assessment of AI ethical reflection: the development and validation of the AI ethical reflection scale (AIERS) for university students. International Journal of Educational Technology in Higher Education, 22(1), 1–16. https://doi.org/10.1186/S41239-025-00519-Z
- Wei, X., Kumar, N., and Zhang, H. (2025). Addressing bias in generative AI: Challenges and research opportunities in information management. Information & Management, 62(2), 104103. https://doi.org/10.1016/J.IM.2025.104103
- Woolf, B. (2022). Introduction to IJAIED special issue, FATE in AIED. International Journal of Artificial Intelligence in Education, 32(3), 501–503. https://doi.org/10.1007/s40593-022-00299-x
- Zhang, J., Symons, J., Agapow, P., Teo, J. T., Paxton, C. A., Abdi, J., Mattie, H., Davie, C., Torres, A. Z., and Folarin, A. (2022). Best practices in the real-world data life cycle. PLOS Digital Health, 1(1), e0000003. https://doi.org/10.1371/JOURNAL.PDIG.0000003
- Zhang, M. and Osman, K. (2025). Exploring the Implementation and Challenges of the ChatGPT in STEM Higher Education: A Systematic Literature Review. Learning and Analytics in Intelligent Systems, 44, 3–22. https://doi.org/10.1007/978-3-031-80388-8_1
- Zhou, M., Abhishek, V., Derdenger, T., Kim, J., and Srinivasan, K. (2024). Bias in Generative AI. Available at: https://arxiv.org/abs/2403.02726v1
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Raza FA, Singh AD, Kovilpillai JJS, Hamdan A, Rajaratnam V. Safeguarding Integrity in AI-Enhanced Education: Stakeholder Perspectives on Accuracy, Validity, and Ethics in ASEAN.
European Journal of STEM Education. 2025;10(1), 22.
https://doi.org/10.20897/ejsteme/17307
APA 6th edition
In-text citation: (Raza et al., 2025)
Reference: Raza, F. A., Singh, A. D., Kovilpillai, J. J. S., Hamdan, A., & Rajaratnam, V. (2025). Safeguarding Integrity in AI-Enhanced Education: Stakeholder Perspectives on Accuracy, Validity, and Ethics in ASEAN.
European Journal of STEM Education, 10(1), 22.
https://doi.org/10.20897/ejsteme/17307
Chicago
In-text citation: (Raza et al., 2025)
Reference: Raza, Fahd Ali, Abtar Darshan Singh, Jonathan Jeevan Strinivas Kovilpillai, Analisa Hamdan, and Vaikunthan Rajaratnam. "Safeguarding Integrity in AI-Enhanced Education: Stakeholder Perspectives on Accuracy, Validity, and Ethics in ASEAN".
European Journal of STEM Education 2025 10 no. 1 (2025): 22.
https://doi.org/10.20897/ejsteme/17307
Harvard
In-text citation: (Raza et al., 2025)
Reference: Raza, F. A., Singh, A. D., Kovilpillai, J. J. S., Hamdan, A., and Rajaratnam, V. (2025). Safeguarding Integrity in AI-Enhanced Education: Stakeholder Perspectives on Accuracy, Validity, and Ethics in ASEAN.
European Journal of STEM Education, 10(1), 22.
https://doi.org/10.20897/ejsteme/17307
MLA
In-text citation: (Raza et al., 2025)
Reference: Raza, Fahd Ali et al. "Safeguarding Integrity in AI-Enhanced Education: Stakeholder Perspectives on Accuracy, Validity, and Ethics in ASEAN".
European Journal of STEM Education, vol. 10, no. 1, 2025, 22.
https://doi.org/10.20897/ejsteme/17307
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Raza FA, Singh AD, Kovilpillai JJS, Hamdan A, Rajaratnam V. Safeguarding Integrity in AI-Enhanced Education: Stakeholder Perspectives on Accuracy, Validity, and Ethics in ASEAN. European Journal of STEM Education. 2025;10(1):22.
https://doi.org/10.20897/ejsteme/17307