European Journal of STEM Education
Research Article
2025, 10(1), Article No: 22

Safeguarding Integrity in AI-Enhanced Education: Stakeholder Perspectives on Accuracy, Validity, and Ethics in ASEAN

Published in Volume 10 Issue 1: 19 Oct 2025
Download: 12
View: 47

Abstract

Artificial Intelligence (AI) is rapidly reshaping educational systems worldwide, raising critical debates about the reliability of AI-generated content, the validity of AI-driven assessments, and the ethical implications of its integration into diverse learning environments. This study examines the integrity of AI-enhanced education within the ASEAN region by focusing on three core dimensions: content accuracy, assessment validity, and ethical challenges. Data were collected from 661 respondents, including educators, policymakers, and technology providers, during the ASEAN Stakeholder Summit 2024 through a cross-sectional survey design. To interrogate the data, Chi-Square Tests of Independence were used to explore associations between categorical variables such as gender and ethical concerns, while ANOVA assessed differences in perceptions of AI-driven assessments across ASEAN member states. Correlation analysis further investigated relationships between respondent demographics and perceptions of AI accuracy, offering a nuanced view of stakeholder trust in AI-enabled practices. Findings indicate that while AI holds transformative potential for education, its deployment must be accompanied by region-specific guidelines, rigorous ethical safeguards, and multi-stakeholder collaboration. Such measures are essential to ensure that AI-driven education is both culturally relevant and socio-economically equitable, supporting responsible and sustainable implementation across the ASEAN context.
Figure 1 Figure 1. Concept Map
  • Adaga, E. M., Egieya, Z. E., Ewuga, S. K., Abdul, A. A., and Abrahams, T. O. (2024). Philosophy in business analytics: a review of sustainable and ethical approaches. International Journal of Management & Entrepreneurship Research, 6(1), 69–86. https://doi.org/10.51594/IJMER.V6I1.710
  • Adams, M. A., and Conway, T. L. (2021). Eta Squared. Encyclopaedia of Quality of Life and Well-Being Research, 1–2. https://doi.org/10.1007/978-3-319-69909-7_918-2
  • Ali, E. P. S. E., Ndubuisi, O. G., Obiorah, C. A. R., Aku, E. U. T., Nesiama, O., Agbakhamen, E. C. O., and Okoro, E. O. P. (2025). Ethical standards in research: A professional imperative. International Journal of Innovative Scientific & Engineering Technologies Research, 13(1), 94–104. https://doi.org/10.5281/zenodo.14875237
  • Alsharif, A. (2025). Artificial Intelligence and the Future of Assessment: Opportunities for Scalable, Fair, and Real-Time Evaluation. Libyan Journal of Educational Research and E-Learning (LJERE), 42–52. Available at: https://ljere.com.ly/index.php/ljere/article/view/5
  • Amanbekqyzy, A. A., Serikovna, N. A., and Erlanovna, A. A. (2024). AI-Enhanced Educational Content Creation. Endless Light in Science, 5(3), 9–11. Available at: https://cyberleninka.ru/article/n/ai-enhanced-educational-content-creation
  • Amoozadeh, M., Daniels, D., Nam, D., Kumar, A., Chen, S., Hilton, M., Ragavan, S. S., and Alipour, M. A. (2024). Trust in generative AI among students: An exploratory study, in Proceedings of the 55th ACM Technical Symposium on Computer Science Education, SIGCSE 2024, 20–23 March 2024. Portland, OR: ACM, 67–73. https://doi.org/10.1145/3626252.3630842
  • Association of Southeast Asian Nations (ASEAN). (2024). ASEAN guide on AI governance and ethics.
  • Available at: https://asean.org/wp-content/uploads/2024/02/ASEAN-Guide-on-AI-Governance-and-Ethics_beautified_201223_v2.pdf
  • Aschbrenner, K. A., Kruse, G., Gallo, J. J., and Plano Clark, V. L. (2022). Applying mixed methods to pilot feasibility studies to inform intervention trials. Pilot and Feasibility Studies, 8(1), 1–13. https://doi.org/10.1186/s40814-022-01178-x
  • Badmus, O. T., Jita, T., and Jita, L. C. (2024). Exploring Undergraduates’ Underachievement in Science Technology Engineering and Mathematics: Opportunity and Access for Sustainability. European Journal of STEM Education, 9(1), 10. https://doi.org/10.20897/ejsteme/14741
  • Baek, T. H., and Kim, M. (2023). Is ChatGPT scary good? How user motivations affect creepiness and trust in generative artificial intelligence. Telematics and Informatics, 83, 102030. https://doi.org/10.1016/j.tele.2023.102030
  • Bulut, O, Beiting-Parrish, M., Casabianca, J. M., Slater, S. C., Jiao, H., Song, D., Ormerod, C., Fabiyi, D. G., Ivan, R., Walsh, C., Rios, O., Wilson, J., Yildirim-Erbasli, S. N., Wongvorachan, T., Liu, J. X., Tan, B., and Morilova, P. (2024). The Rise of Artificial Intelligence in Educational Measurement: Opportunities and Ethical Challenges. Chinese/English Journal of Educational Measurement and Evaluation, 5(3), 3. https://doi.org/10.59863/MIQL7785
  • Carey, E. G., Ridler, I., Ford, T. J., and Stringaris, A. (2023). Editorial Perspective: When is a “small effect” actually large and impactful? Journal of Child Psychology and Psychiatry, and Allied Disciplines, 64(11), 1643–1647. https://doi.org/10.1111/jcpp.13817
  • Chandramma, R., Babu, K. S., Ranjith, K. S., Sinha, A. K., Neerugatti, V., and Reddy, D. S. (2025). Enhancing e-learning accessibility through AI and inclusive design, in Proceedings of the 6th International Conference on Mobile Computing and Sustainable Informatics, ICMCSI 2025, 7–8 January 2025. Goathgaun, Nepal: IEEE, 1466–1471. https://doi.org/10.1109/ICMCSI64620.2025.10883148
  • Chaparro-Banegas, N., Mas-Tur, A., and Roig-Tierno, N. (2024). Challenging critical thinking in education: New paradigms of artificial intelligence. Cogent Education, 11(1), 2437899. https://doi.org/10.1080/2331186X.2024.2437899
  • Chen, W.-H., Uribe, M. C., Kwon, E. E., Lin, K.-Y. A., Park, Y.-K., Ding, L., and Saw, L. H. (2022). A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). Renewable and Sustainable Energy Reviews, 169, 112917. https://doi.org/10.1016/j.rser.2022.112917
  • Chimbga, B. (2023). Exploring the ethical and societal concerns of generative AI in Internet of Things (IoT) environments, in Pillay, A., Jembere, E. and Gerber, A. J. (eds), Artificial Intelligence Research: Proceedings of SACAIR 2023, 4–6 December 2023. Pretoria, South Africa: Springer, 44–56. https://doi.org/10.1007/978-3-031-49002-6_4
  • Chinta, S. V., Wang, Z., Yin, Z., Hoang, N., Gonzalez, M., Quy, T. L., and Zhang, W. (2024). FairAIED: Navigating Fairness, Bias, and Ethics in Educational AI Applications. ArXiv. https://doi.org/10.48550/arXiv.2407.18745
  • Correll, J., Mellinger, C., and Pedersen, E. J. (2022). Flexible approaches for estimating partial eta squared in mixed-effects models with crossed random factors. Behaviour Research Methods, 54(4), 1626–1642. https://doi.org/10.3758/S13428-021-01687-2
  • Cvetkovic-Vega, A., Maguiña, J. L., Soto, A., Lama-Valdivia, J., and Correa López, L. E. (2021). Cross-sectional studies. Revista de La Facultad de Medicina Humana, 21(1), 179–185. https://doi.org/10.25176/RFMH.V21I1.3069
  • Daneshjou, R., Smith, M. P., Sun, M. D., Rotemberg, V., and Zou, J. (2021). Lack of Transparency and Potential Bias in Artificial Intelligence Data Sets and Algorithms: A Scoping Review. JAMA Dermatology, 157(11), 1362–1369. https://doi.org/10.1001/jamadermatol.2021.3129
  • Dankel, S. J., and Loenneke, J. P. (2021). Effect sizes for paired data should use the change score variability rather than the pre-test variability. Journal of Strength & Conditioning Research, 35(6), 1773–1778. https://doi.org/10.1519/JSC.0000000000002946
  • Duan, W., McNeese, N., and Li, L. (2025). Gender stereotypes toward non-gendered generative AI: The role of gendered expertise and gendered linguistic cues. Proceedings of the ACM on Human-Computer Interaction, 9(1), 35. https://doi.org/10.1145/3701197
  • Dugard, P., Todman, J., and Staines, H. (2022). Analysis of variance (ANOVA), in Approaching multivariate analysis: A practical introduction (pp. 13–54). London: Routledge. https://doi.org/10.4324/9781003343097-2
  • Dunn, A. G., Shih, I., Ayre, J., and Spallek, H. (2023). What generative AI means for trust in health communications. Journal of Communication in Healthcare, 16(4), 385–388. https://doi.org/10.1080/17538068.2023.2277489
  • Elangovan, N. and Sundaravel, E. (2021). Method of preparing a document for survey instrument validation by experts. MethodsX, 8, 101326. https://doi.org/10.1016/J.MEX.2021.101326
  • Ferrara, E. (2024). Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies. Sci, 6(1), 3. https://doi.org/10.3390/sci6010003
  • Flake, J. K., Davidson, I. J., Wong, O., and Pek, J. (2022). Construct validity and the validity of replication studies: A systematic review. American Psychologist, 77(4), 576–588. https://doi.org/10.1037/AMP0001006
  • Forero, C. G. (2023). Cronbach’s alpha, in Encyclopaedia of quality of life and well-being research (pp. 1505–1507). Cham: Springer. https://doi.org/10.1007/978-3-031-17299-1_622
  • Franzke, A. S., Muis, I., and Schäfer, M. T. (2021). Data Ethics Decision Aid (DEDA): a dialogical framework for ethical inquiry of AI and data projects in the Netherlands. Ethics and Information Technology, 23(3), 551–567. https://doi.org/10.1007/S10676-020-09577-5
  • Freeman, R. E. (1984). Strategic management: A stakeholder approach. Boston: Pitman.
  • Frosio, G. (2025). Should we ban generative AI, incentivize it or make it a medium for inclusive creativity? In A research agenda for EU copyright law (pp. 61–86). Cheltenham: Edward Elgar Publishing. https://doi.org/10.4337/9781803927329.00010
  • Ghanad, A. (2023). An overview of quantitative research methods. International Journal of Multidisciplinary Research and Analysis, 6(8), 3794–3803. https://doi.org/10.47191/IJMRA/V6-I8-52
  • Ghosh, S., Venkit, P. N., Gautam, S., Wilson, S., and Caliskan, A. (2024). Do generative AI models output harm while representing non-Western cultures: Evidence from a community-centered approach, in Proceedings of the AAAI/ACM conference on AI, ethics, and society, 21–23 October 2024. San Jose, CA: AAAI Press. https://doi.org/10.1609/aies.v7i1.31651
  • Globig, L. K., Xu, R., Rathje, S. and Van Bavel, J. J. (2024). Perceived (Mis)alignment in generative Artificial Intelligence Varies Across Cultures. https://doi.org/10.31234/OSF.IO/SUQA2
  • Golda, A., Mekonen, K., Pandey, A., Singh, A., Hassija, V., Chamola, V., and Sikdar, B. (2024). Privacy and security concerns in generative AI: A comprehensive survey. IEEE Access, 12, 48126–48144. https://doi.org/10.1109/ACCESS.2024.3381611
  • Hamdan, A., Singh, A. D., Kovilpillai, J. J. S., Kamsin, I. F., Suriyarangsun, C., Brahmawong, W., Phanphai, P., and Aggarwal, S. (2024). The Digitally Intelligent Girls (DI-Girls) initiative’s potential, pitfalls, and prospects. International Journal of Academic Research in Progressive Education and Development, 13(1), 1123–1135. https://doi.org/10.6007/IJARPED/V13-I1/19396
  • Hamid, A. A. (2024). Ethical standards for scientific research using the internet. Al-Noor Journal for Digital Media Studies, 1(0), 14–31. https://doi.org/10.69513/jnfdms.v.1.i.0.en.1
  • Hasan, N., Rana, R. U., Chowdhury, S., Dola, A. J., and Rony, M. K. K. (2021). Ethical considerations in research. Journal of Nursing Research, Patient Safety and Practice, 1(01), 1–4. https://doi.org/10.55529/JNRPSP11.1.4
  • Hofstede, G. and Bond, M. H. (1988). The Confucius connection: From cultural roots to economic growth. Organizational Dynamics, 16(4), 5–21. https://doi.org/10.1016/0090-2616(88)90009-5
  • Hossan, D., Mansor, Z. D., and Jaharuddin, N. S. (2023). Research population and sampling in quantitative study. International Journal of Business and Technopreneurship (IJBT), 13(3), 209–222. https://doi.org/10.58915/IJBT.V13I3.263
  • Huang, L. (2023). Ethics of artificial intelligence in education: Student privacy and data protection. Science Insights Education Frontiers, 16(2), 2577–2587. https://doi.org/10.15354/SIEF.23.RE202
  • Iacobucci, D., Popovich, D. L., Moon, S., and Román, S. (2023). How to calculate, use, and report variance explained effect size indices and not die trying. Journal of Consumer Psychology, 33(1), 45–61. https://doi.org/10.1002/JCPY.1292
  • Iliyasu, R., and Etikan, I. (2021). Comparison of quota sampling and stratified random sampling. Biometrics & Biostatistics International Journal Review, 10(1), 24–27. https://doi.org/10.15406/BBIJ.2021.10.00326
  • Janse, R. J., Hoekstra, T., Jager, K. J., Zoccali, C., Tripepi, G., Dekker, F. W., and Van Diepen, M. (2021). Conducting correlation analysis: important limitations and pitfalls. Clinical Kidney Journal, 14(11), 2332–2337. https://doi.org/10.1093/CKJ/SFAB085
  • Khazanchi, R., and Khazanchi, P. (2024). Generative AI to improve special education teacher preparation for inclusive classrooms, in Searson, M., Langran, E. and Trumble, J. (eds), Exploring new horizons: Generative artificial intelligence and teacher education(pp. 159–177). Waynesville, NC: Association for the Advancement of Computing in Education. Available at: https://www.learntechlib.org/primary/p/223928/
  • Kim, J. H., Kim, J., Kim, C., and Kim, S. (2023). Do you trust ChatGPTs? Effects of the ethical and quality issues of generative AI on travel decisions. Journal of Travel & Tourism Marketing, 40(9), 779–801. https://doi.org/10.1080/10548408.2023.2293006
  • Kovilpillai, J. J. S., Singh, A. D., Hamdan, A., McKenna, K., and Raza, F. A. (2025). AI-Enhanced Micro-Credentials for Efficiency and Accessibility: Using Gen-AI to Improve the Design, Development, and Delivery of Micro-Credentials. In The Rise of Micro-Credentials: A New Certification System for Career Development (pp. 153–194). IGI Global. https://doi.org/10.4018/979-8-3693-5488-9.CH008
  • Kusmaryono, I., Wijayanti, D., and Maharani, H. R. (2022). Number of response options, reliability, validity, and potential bias in the use of the Likert scale in education and social science research: A literature review. International Journal of Educational Methodology, 8(4), 625–637. https://doi.org/10.12973/ijem.8.4.625
  • Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J., and Kim, H. (2024). Few-shot is enough: Exploring ChatGPT prompt engineering method for automatic question generation in English education. Education and Information Technologies, 29(9), 11483–11515. https://doi.org/10.1007/S10639-023-12249-8
  • Leslie, D., Rincón, C., Briggs, M., Perini, A., Jayadeva, S., Borda, A., Bennett, S., Burr, C., Aitken, M., Katell, M., Fischer, C., Wong, J., and Garcia, I. K. (2023). AI Fairness in Practice. The Alan Turing Institute. https://doi.org/10.5281/zenodo.10680527
  • Liang, W., Tadesse, G. A., Ho, D., Fei-Fei, L., Zaharia, M., Zhang, C., and Zou, J. (2022). Advances, challenges and opportunities in creating data for trustworthy AI. Nature Machine Intelligence, 4(8), 669–677. https://doi.org/10.1038/s42256-022-00516-1
  • Liaw, S.T., Guo, J. G. N., Ansari, S., Jonnagaddala, J., Godinho, M. A., Borelli Jr, A. J., de Lusignan, S., Capurro, D., Liyanage, H., Bhattal, N., Bennett, V., Chan, J., and Kahn, M. G. (2021). Quality assessment of real-world data repositories across the data life cycle: A literature review. Journal of the American Medical Informatics Association, 28(7), 1591–1599. https://doi.org/10.1093/JAMIA/OCAA340
  • Lim, W. M. (2024). A typology of validity: Content, face, convergent, discriminant, nomological, and predictive validity. Journal of Trade Science, 12(3), 155–179. https://doi.org/10.1108/JTS-03-2024-0016
  • Lovakov, A., and Agadullina, E. R. (2021). Empirically derived guidelines for effect size interpretation in social psychology. European Journal of Social Psychology, 51(3), 485–504. https://doi.org/10.1002/ejsp.2752
  • Maier, C., Thatcher, J. B., Grover, V., and Dwivedi, Y. K. (2023). Cross-sectional research: A critical perspective, use cases, and recommendations for IS research. International Journal of Information Management, 70, 102625. https://doi.org/10.1016/J.IJINFOMGT.2023.102625
  • Makwana, D., Engineer, P., Dabhi, A., and Chudasama, H. (2023). Sampling methods in research: A review. International Journal of Trend in Scientific Research and Development, 7(3), 762–768. Available at: https://www.ijtsrd.com/papers/ijtsrd57470.pdf
  • Miao, F., Holmes, W., Huang, R., and Zhang, H. (2021). AI and education: Guidance for policy-makers. Paris, France: UNESCO. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000376709
  • Nag, B. (2025). The evolution of ethical standards and guidelines in AI. In Responsible Implementations of Generative AI for Multidisciplinary Use (pp. 45–84). IGI Global. Available at: https://www.igi-global.com/chapter/the-evolution-of-ethical-standards-and-guidelines-in-ai/357135
  • Nanda, A., Mohapatra, Dr. B. B., Mahapatra, A. P. K., Mahapatra, A. P. K., and Mahapatra, A. P. K. (2021). Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. International Journal of Statistics and Applied Mathematics, 6(1), 59–65. https://doi.org/10.22271/MATHS.2021.V6.I1A.636
  • Nivedhaa, N. (2024). A comprehensive review of AI’s dependence on data. International Journal of Artificial Intelligence and Data Science (IJADS), 1(1), 1–11. Available at: https://iaeme.com/MasterAdmin/Journal_uploads/IJADS/VOLUME_1_ISSUE_1/IJADS_01_01_001.pdf
  • Nixon, N., Lin, Y., and Snow, L. (2024). Catalysing equity in STEM teams: Harnessing generative AI for inclusion and diversity. Policy Insights from the Behavioural and Brain Sciences, 11(1), 85–92. https://doi.org/10.1177/237273222312203
  • Novak, K. (2025). A comparison of the appropriateness of various internal consistency coefficients––an alternative to Cronbach’s alpha (PhD thesis). University of Zagreb, Faculty of Humanities and Social Sciences. Available at: https://repozitorij.unizg.hr/islandora/object/ffzg:12566
  • Ong, G. H., Krishnan, S., and Reston, E. (2024). Investigating Determinants of STEM Major Choice Among Malaysian Undergraduates. European Journal of STEM Education, 9(1), 17. https://doi.org/10.20897/ejsteme/15668
  • Organisation for Economic Co-operation and Development. (2024). The potential impact of Artificial Intelligence on equity and inclusion in education. Available at: https://www.oecd.org/education/the-potential-impact-of-artificial-intelligence-on-equity-and-inclusion-in-education_0d7e9e00.pdf
  • Pechenkina, E. (2023). Artificial intelligence for good? Challenges and possibilities of AI in higher education from a data justice perspective. In Higher Education for Good: Teaching and Learning Futures (pp. 239–266). Cambridge, UK: Open Book Publishers. https://doi.org/10.11647/OBP.0363.09
  • Purvis, A. J. and Crawford, J. (2024). Ethical Standards in Social Science Publications. Journal of University Teaching and Learning Practice, 21(09). https://doi.org/10.53761/HQNQR710
  • Rahman, M. M., Tabash, M. I., Salamzadeh, A., Abduli, S., and Rahaman, M. S. (2022). Sampling techniques (probability) for quantitative social science researchers: A conceptual guidelines with examples. SEEU Review, 17(1), 42–51. https://doi.org/10.2478/SEEUR-2022-0023
  • Rajaratnam, V., Dong, C., Singh, A., Kovilpillai, J. J. S., Raza, F. A., and Tan, S. (2024). AI-Powered Education: Navigating the Future of Learning Design. Available at: https://www.researchgate.net/publication/386026854_AI_-_POWERED_EDUCATION_NAVIGATING_THE_FUTURE_OF_LEARNING_DESIGN
  • Rana, J., Gutiérrez, P. L., and Oldroyd, J. C. (2022). Quantitative methods. In A. Farazmand (Ed.), Global Encyclopaedia of Public Administration, Public Policy, and Governance (pp. 11202–11207). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-66252-3_460
  • Raza, F. A., and Singh, A. D. (2024a). Unveiling the missing link: Women in STEM leadership – A comprehensive review. In International Journal of Advanced Business Studies, 3 (special issue), 15–27. https://doi.org/10.59857/IJABS.1109
  • Raza, F. A., and Singh, A. D. (2024b, May). Best practices in developing gender inclusive curriculum and pedagogy: A literature review. In Proceedings of the International Conference on Curriculum and Educational Instruction (APROCEI) 17 May. Kuala Lumpur, Malaysia. Available at: https://anyflip.com/vvtwe/bkuy/basic
  • Raza, F. A., Singh, A. D., Kovilpillai, J. J. S., and Hamdan, A. (2024). Gender gaps and convergence: ASEAN stakeholder perspectives on artificial intelligence in education. Journal of Research in Gender Studies, 14(2), 38–50. https://doi.org/10.22381/JRGS14220242
  • Salleh, K. M., Sulaiman, N. L., and Gloeckner, G. (2023). Exploring test concept and measurement through validity and reliability process in TVET research: Guideline for the novice researcher. Journal of Technical Education and Training, 15(1), 257–264. https://doi.org/10.30880/JTET.2023.15.01.022
  • Sandhu, R., Channi, H. K., Ghai, D., Cheema, G. S., and Kaur, M. (2024). An introduction to generative AI tools for education 2030. Integrating Generative AI in Education to Achieve Sustainable Development Goals, 1–28. https://doi.org/10.4018/979-8-3693-2440-0.CH001
  • Scior, K., Hamid, A., and Dixon, A. (2024). Ethical Standards Guide. New York, NY: UN Women. Available at: https://discovery.ucl.ac.uk/id/eprint/10196754/
  • Shen, C., Panda, S., and Vogelstein, J. T. (2022). The Chi-Square Test of Distance Correlation. Journal of Computational and Graphical Statistics: A Joint Publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America, 31(1), 254–262. https://doi.org/10.1080/10618600.2021.1938585
  • Shwedeh, F., Salloum, S. A., Aburayya, A., Fatin, B., Elbadawi, M. A., Al Ghurabli, Z., and Al Dabbagh, T. (2024). AI Adoption and Educational Sustainability in Higher Education in the UAE. Artificial Intelligence in Education: The Power and Dangers of ChatGPT in the Classroom, 144, 201–229. https://doi.org/10.1007/978-3-031-52280-2_14
  • Singh, S., and Mahadevan, A. (2022, June). Employing blockchain and machine learning for monitoring the accumulation and dispensation of COVID-19 vaccine. In International Conference on Signal & Data Processing (pp. 405–418). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-1410-4_34
  • Sriram, V., Conard, A. M., Rosenberg, I., Kim, D., Saponas, T. S., and Hall, A. K. (2025). Addressing biomedical data challenges and opportunities to inform a large-scale data lifecycle for enhanced data sharing, interoperability, analysis, and collaboration across stakeholders. Scientific Reports, 15(1), 6291. https://doi.org/10.1038/s41598-025-90453-x
  • Stephanidis, C. (2023). Paradigm shifts towards an inclusive society: From the desktop to human-centered artificial intelligence, in Proceedings of the 2nd International Conference of the ACM Greek SIGCHI Chapter, September 2023. Athens, Greece: ACM. (pp. 1–4). https://doi.org/10.1145/3609987.3610109.
  • Tanujaya, B., Prahmana, R. C. I., and Mumu, J. (2022). Likert scale in social sciences research: Problems and difficulties. FWU Journal of Social Sciences, 16(4), 89–101. Available at: https://ojs.sbbwu.edu.pk/fwu-journal/index.php/ojss/article/view/871
  • Taylor, Z. (2024). Using Chat GPT to Clean Qualitative Interview Transcriptions: A Usability and Feasibility Analysis. American Journal of Qualitative Research, 8(2), 153-160. https://doi.org/10.29333/ajqr/14487
  • Teresi, J. A., Yu, X., Stewart, A. L., and Hays, R. D. (2022). Guidelines for designing and evaluating feasibility pilot studies. Medical Care, 60(1), 95–103. https://doi.org/10.1097/MLR.0000000000001664
  • Triandis, H. C. (1995). Individualism and collectivism. Boulder: Westview Press.
  • Triana, Y. (2025). Improving Linguistics Skill on EFL Students Using Learning Management System: A Critical Literature Review. Journal of Ethnic and Cultural Studies, 12(3), 199–223. https://doi.org/10.29333/ejecs/1864
  • Trust, T., Whalen, J., and Mouza, C. (2023). Editorial: ChatGPT: Challenges, opportunities, and implications for teacher education. Contemporary Issues in Technology and Teacher Education, 23(1), 1–23. Available at: https://www.learntechlib.org/p/222408
  • Uddagiri, C., and Isunuri, B. V. (2024). Ethical and Privacy Challenges of Generative AI. Studies in Computational Intelligence, 1177, 219–244. https://doi.org/10.1007/978-981-97-8460-8_11
  • Valentini, A. and Blancas, A. (2025). The challenges of AI in higher education and institutional responses: Is there room for competency frameworks? IESALC Working papers, 12(10). Available at: https://unesdoc.unesco.org/ark:/48223/pf0000394935
  • Vis, B., and Stolwijk, S. (2021). Conducting quantitative studies with the participation of political elites: Best practices for designing the study and soliciting the participation of political elites. Quality & Quantity, 55(4), 1281–1317. https://doi.org/10.1007/s11135-020-01052-z
  • Wang, T. (2023). Empowering minds: A round table on Generative AI and Education in Asia-Pacific [Commissioned report]. Paris, France: United Nations Educational, Scientific and Cultural Organization. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000388367
  • Wang, Z., Chai, C. S., Li, J., and Lee, V. W. Y. (2025). Assessment of AI ethical reflection: the development and validation of the AI ethical reflection scale (AIERS) for university students. International Journal of Educational Technology in Higher Education, 22(1), 1–16. https://doi.org/10.1186/S41239-025-00519-Z
  • Wei, X., Kumar, N., and Zhang, H. (2025). Addressing bias in generative AI: Challenges and research opportunities in information management. Information & Management, 62(2), 104103. https://doi.org/10.1016/J.IM.2025.104103
  • Woolf, B. (2022). Introduction to IJAIED special issue, FATE in AIED. International Journal of Artificial Intelligence in Education, 32(3), 501–503. https://doi.org/10.1007/s40593-022-00299-x
  • Zhang, J., Symons, J., Agapow, P., Teo, J. T., Paxton, C. A., Abdi, J., Mattie, H., Davie, C., Torres, A. Z., and Folarin, A. (2022). Best practices in the real-world data life cycle. PLOS Digital Health, 1(1), e0000003. https://doi.org/10.1371/JOURNAL.PDIG.0000003
  • Zhang, M. and Osman, K. (2025). Exploring the Implementation and Challenges of the ChatGPT in STEM Higher Education: A Systematic Literature Review. Learning and Analytics in Intelligent Systems, 44, 3–22. https://doi.org/10.1007/978-3-031-80388-8_1
  • Zhou, M., Abhishek, V., Derdenger, T., Kim, J., and Srinivasan, K. (2024). Bias in Generative AI. Available at: https://arxiv.org/abs/2403.02726v1
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Raza FA, Singh AD, Kovilpillai JJS, Hamdan A, Rajaratnam V. Safeguarding Integrity in AI-Enhanced Education: Stakeholder Perspectives on Accuracy, Validity, and Ethics in ASEAN. European Journal of STEM Education. 2025;10(1), 22. https://doi.org/10.20897/ejsteme/17307
APA 6th edition
In-text citation: (Raza et al., 2025)
Reference: Raza, F. A., Singh, A. D., Kovilpillai, J. J. S., Hamdan, A., & Rajaratnam, V. (2025). Safeguarding Integrity in AI-Enhanced Education: Stakeholder Perspectives on Accuracy, Validity, and Ethics in ASEAN. European Journal of STEM Education, 10(1), 22. https://doi.org/10.20897/ejsteme/17307
Chicago
In-text citation: (Raza et al., 2025)
Reference: Raza, Fahd Ali, Abtar Darshan Singh, Jonathan Jeevan Strinivas Kovilpillai, Analisa Hamdan, and Vaikunthan Rajaratnam. "Safeguarding Integrity in AI-Enhanced Education: Stakeholder Perspectives on Accuracy, Validity, and Ethics in ASEAN". European Journal of STEM Education 2025 10 no. 1 (2025): 22. https://doi.org/10.20897/ejsteme/17307
Harvard
In-text citation: (Raza et al., 2025)
Reference: Raza, F. A., Singh, A. D., Kovilpillai, J. J. S., Hamdan, A., and Rajaratnam, V. (2025). Safeguarding Integrity in AI-Enhanced Education: Stakeholder Perspectives on Accuracy, Validity, and Ethics in ASEAN. European Journal of STEM Education, 10(1), 22. https://doi.org/10.20897/ejsteme/17307
MLA
In-text citation: (Raza et al., 2025)
Reference: Raza, Fahd Ali et al. "Safeguarding Integrity in AI-Enhanced Education: Stakeholder Perspectives on Accuracy, Validity, and Ethics in ASEAN". European Journal of STEM Education, vol. 10, no. 1, 2025, 22. https://doi.org/10.20897/ejsteme/17307
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Raza FA, Singh AD, Kovilpillai JJS, Hamdan A, Rajaratnam V. Safeguarding Integrity in AI-Enhanced Education: Stakeholder Perspectives on Accuracy, Validity, and Ethics in ASEAN. European Journal of STEM Education. 2025;10(1):22. https://doi.org/10.20897/ejsteme/17307
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Submit My Manuscript



Phone: +31 (0)70 2190600 | E-Mail: info@lectitojournals.com

Address: Cultura Building (3rd Floor) Wassenaarseweg 20 2596CH The Hague THE NETHERLANDS

Disclaimer

This site is protected by copyright law. This site is destined for the personal or internal use of our clients and business associates, whereby it is not permitted to copy the site in any other way than by downloading it and looking at it on a single computer, and/or by printing a single hard-copy. Without previous written permission from Lectito BV, this site may not be copied, passed on, or made available on a network in any other manner.

Content Alert

Copyright © 2015-2025 LEUKOS BV All rights reserved.