Abstract
STEM professions, which encompass science, technology, engineering, and mathematics, are crucial for the labor market and society. The demand for these professions has increased in recent years due to the pervasiveness of technology in daily life. Thus, fostering a positive attitude toward STEM among children and young is essential. This study aims to analyze the attitudes of boys and girls aged 9 to 17 toward STEM education after attending a series of courses at a Tech Summer Camp. It also examines whether attitudes differ by sex and age. A cross-sectional quasiexperimental pretest-post-test design with a quantitative methodology was used to collect and analyze data. Unlike findings from Spanish schoolchildren, our sample displayed more positive attitudes toward STEM education with increasing age. However, younger participants showed the greatest improvement in their perception of the usefulness of science, attributable to their experiences at the Tech Summer Camp. Regarding sex, no significant differences were observed across most dimensions, except in usefulness and liking, where females excelled. There is a clear need to promote such activities at an early age, particularly for girls. The study confirms that attending technology-focused camps in an informal educational setting enhances attitudes toward STEM education, especially among younger children.
- Anand, N., & Dogan, B. (2021). Impact of informal learning environments on STEM education. Views of elementary students and their parents. School Science and Mathematics, 121(4), 369–377. https://doi.org/10.1111/ssm.12490
- Archer, L., Moote, J., Francis, B., DeWitt, J., & Yeomans, L. (2017). The “exceptional” physics girl: A sociological analysis of multimethod data from young women aged 10–16 to explore gendered patterns of post-16 participation. American Educational Research Journal, 54(1), 88–126. https://doi.org/10.3102/0002831216678379
- Archer, L., Osborne, J., Dillon, J., DeWitt, J., Willis, B., Wong, B., & Orpwood-Russell, M. (2013). What shapes children’s science and career aspirations age 10-13? Interim Research Summary, ASPIRES Project’. London: King’s College London. https://reshare.ukdataservice.ac.uk/851148/1/ASPIRES-summary-spring-2013.pdf
- Barker, B. S., Larson, K., & Krehbiel, M. (2014). Bridging formal and informal learning environments. The Journal of Extension, 52(5), 26. https://doi.org/10.34068/joe.52.05.26
- Blazev, M., Karabegovic, M., Burusic, J., & Selimbegovic, L. (2017). Predicting gender-STEM stereotyped beliefs among boys and girls from prior school achievement and interest in STEM school subjects. Social Psychology of Education, 20(4), 831-847. https://doi.org/10.1007/s11218- 017-9397-7
- Broder, E. D., Fetrow, K. J., Murphy, S. M., Hoffman, J. L., & Tinghitella, R. M. (2023). STEM summer camp for girls positively affects self-efficacy. The American Biology Teacher, 85(8), 432–439. https://doi.org/10.1525/abt.2023.85.8.432
- Calabrese Barton, A., Kang, H., Tan, E., O’Neill, T. B., Bautista-Guerra, J., & Brecklin, C. (2013). Crafting a future in science: Tracing middle school girls’ identity work over time and space. American Educational Research Journal, 50(1), 37–75. https://doi.org/10.3102/0002831212458142
- Capraro, R. M., Capraro, M. M., & Morgan, J. (2013). STEM project-based learning: An integrated science, technology, engineering, and mathematics (STEM) approach. (2nd ed.). Sense Publishers.
- Chan, H. Y., Choi, H., Hailu, M. F., Whitford, M., DeRouen, S. D. (2020). Participation instructured STEM-focused out-of-school time programs in secondary school: Linkage to postsecondary STEM aspiration and major. Journal of Research in Science Teaching, 57, 1250–1280. https://doi.org/10. 1002/tea.21629
- Cheryan, S., Ziegler, S. A., Montoya, A. K., & Jiang, L. (2017). Why are some STEM fields more gender balanced than others? Psychological Bulletin, 143(1), 1–35. https://doi.org/10.1037/bul0000052
- Chetcuti, D. A., & Kioko, B. (2012). Girls attitudes towards science in Kenya. International Journal of Science Education, 34(10), 1571–1589. https://doi.org/10.1080/09500693.2012.665196
- Cohen, J. (1992) Quantitative Methods in psychology: A power primer. Psychological Bulletin, 112, 155–159. https://doi.org/10.1037/0033-2909.112.1.155
- Corder, G. W., & Foreman, D. I. (2009). Nonparametric statistics for non-statisticians: A step-by-step approach. John Wiley & Sons. https://doi.org/10.1002/9781118165881
- Crittenden, C. A., Crick, S., Basham, S. L., & Storey, H. (2023). Let’s Talk about sex(uality): A content analysis of the inclusion and measurement of sexual identity and sexual orientation in published criminological research. American Journal of Qualitative Research, 7(3), 65-90. https://doi.org/10.29333/ajqr/13240
- Dabney, K. P., Tai, R. H., Almarode, J. T., Miller-Friedmann, J. L., Sonnert, G., Sadler, P. M., & Hazari, Z. (2012). Out-of-school time science activities and their association with career interest in STEM. International Journal of Science Education, Part B, 2(1), 63–79. https://doi.org/10.1080/21548455.2011.629455
- Denessen, E., Vos, N., Hasselman, F., & Louws, M. (2015). The relationship between primary school teacher and student attitudes towards science and technology. Education Research International, 2015, 534690. https://doi.org/10.1155/2015/534690
- DeWitt, J., & Archer, L. (2015). Who aspires to a science career? A comparison of survey responses from primary and secondary school students. International Journal of Science Education, 37(13), 2170–2192. https://doi.org/10.1080/09500693.2015.1071899
- European Commission. (2020). Digital education action plan 2021–2027. https://education.ec.europa.eu/focus-topics/digital-education/about-digital-education
- Garibay, J. C. (2015). STEM students' social agency and views on working for social change: Are STEM disciplines developing socially and civically responsible students? Journal of Research in Science Teaching, 52(5), 610–632. https://doi.org/10.1002/tea.21203
- Gibson, H. L., & Chase, C. (2002). Longitudinal impact of an inquiry-based science program on middle school students’ attitudes toward science. Science Education, 86, 693–705. https://doi.org/10.1002/sce.10039
- Greca, I. M., Ortiz-Revilla, J., & Arriassecq, I. (2021). Diseño y evaluación de una secuencia de enseñanza-aprendizaje STEAM para Educación Primaria [Design and evaluation of a STEAM teaching-learning sequence for primary education]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18(1), 1802. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1802
- Grewe, F. (2025). The Need for Diffraction in STEM-fields: An ethical feminist consideration of the concept of gender scripting. Feminist Encounters: A Journal of Critical Studies in Culture and Politics, 9(2), Article 28. https://doi.org/10.20897/femenc/16786
- Holmes, K., Gore, J., Smith, M., & Lloyd, A. (2017). An integrated analysis of school students’ aspirations for STEM careers: Which student and school factors are most predictive? International Journal of Science and Mathematics Education, 16(4), 655–675. https://doi.org/10.1007/s10763- 016-9793-z
- Hughes, R., & Roberts, K. (2019). STEM identity growth in co-educational and single-sex STEM summer camps. International Journal of Gender, Science, and Technology, 11(2), 286–311. https://doi.org/10.15695/jstem/v2i1.07
- Hughes, R., Schellinger, J., Billington, B., Britsch, B., & Santiago, A. (2020). A summary of effective gender equitable teaching practices in informal STEM education spaces. Journal of STEM Outreach, 3(1), 1–9. https://doi.org/10.15695/jstem/v3i1.16
- Hurst, M., Polinsky, N., Haden, C. A., Levine, S. C., & Uttal, D. H. (2019). Leveraging research on informal learning to inform policy on promoting early STEM. Social Policy Report, 32(3), 1–33. https://doi.org/10.1002/sop2.5
- Hussim, H., Rosli, R., Nor, N. A. Z. M., Maat, S. M., Mahmud, M. S., Iksan, Z. H., Rambely, A. S., Mahmud, S. N., Halim, L., Osman, K., & Lay, A. N. (2024). A Systematic literature reviewviewinformalrmal Slearning. European Journal of STEM Education, 9(1), 07. https://doi.org/10.20897/ejsteme/14609
- Jackson, C., & Mohr-Schroeder, M. J. (2018). Increasing stem literacy via an informal learning environment. Journal of STEM Teacher Education, 53(1), 4. https://doi.org/10.30707/jste53.1jackson
- Jannini, A. V. S., Akdemir, Z., & Menekse, M. (2024). Achievement goal theory in stem education: a systematic review. Journal of Engineering Education, 113(4), 986–1007. https://doi.org/10.1002/jee.20585
- Jerrim, J., & Schoon, I. (2014). Do teenagers want to become scientists? A comparison of gender differences in attitudes toward science, career expectations, and academic skill across 29 countries. In I. Schoon & J. Eccles (Eds.), Gender differences in aspirations and attainment (pp. 203–223). Cambridge University Press.
- Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. Wiley-Interscience. https://doi.org/10.1002/9780470316801
- Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. Teaching of Psychology, 41(2), 143–149. https://doi.org/10.1177/0098628314521272
- Kim, A. Y., Sinatra, G. M., & Seyranian, V. (2018). Developing a STEM identity among young womenomensocial identity perspective.ive. Review of Educational Research, 88(4), 589–6https://doi.org/10.3102/ 0034654318779957
- Kitchen, J. A., Sonnert, G., & Sadler P. M. (2018). The impact of college‐ and university‐run high school summer programs on students’ end of high school STEM career aspirations. Science Education, 102(3), 529–547. https://doi.org/10.1002/sce.21332
- Lent, R. W., Brown, S. D., & Hackett, G. (2000). Contextual supports and barriers to career choice: A social cognitive analysis. Journal of Counseling Psychology, 47(1), 36–49. https://doi.org/10.1037//0022-0167.47.1.36
- Mahoney, J. L., Lord, H., & Carryl, E. (2005). An ecological analysis of after-school program participation and the development of academic performance and motivational attributes for disadvantaged children. Child Development, 76(4), 811–825. https://doi.org/10.1111/j.1467-8624.2005.00879.x
- Martín-Carrasquilla, O., Muñoz San Roque, I., & Santaolalla Pascual, E. (2023). Actitudes hacia la ciencia en la educación STEM: desarrollo de una escala para la detección y fomento de vocaciones tempranas [Attitudes towards science in stem education: Construction of a scale to identify and promote early vocations]. Revista Española de Orientación y Psicopedagogía, 34(1), 122–140. https://doi.org/10.5944/reop.vol.34.num.1.2023.37421
- McNees, P. (2004). Why Janie can’t engineer: Raising girls to succeed. The Washington Post, p. C09.
- Meier, A., Hartmann, B.S., & Larson, R. A (2018). Quarter century of participation in school-based extracurricular activities: Inequalities by race, class, gender and age? Journal of Youth and Adolescence, 47, 1299–1316. https://doi.org/10.1007/s10964-018-0838-1
- Meyers, E. M., Erickson, I., & Small, R. V. (2013). Digital literacy and informal learning environments: An introduction. Learning, Media and Technology, 38(4), 355–367. https://doi.org/10.1080/17439 884.2013.783597
- Mohr-Schroeder, M. J., Jackson, C., Miller, M., Walcott, B., Little, D. L., Speler, L., Schooler, W., & Schroeder, D. C. (2014). Developing middle school students' interests in STEM via summer learning experiences: See Blue STEM camp. School Science and Mathematics, 114(6), 291–301. https://doi.org/10.1111/ssm.12079
- Morris, D. S. (2016). Extracurricular activity participation in high school: Mechanisms linking participation to math achievement and 4-year college attendance. American Educational Research Journal, 53(5), 1376–1410. https://doi.org/10.3102/0002831216667579
- Nation, M., & Muller, J. (2023). Empowering high school girls in a university-led STEM summer camp. The Journal of STEM Outreach, 6(1), 1–14. https://doi.org/10.15695/jstem/v6i1.09
- National Science Foundation. (2021). Women, minorities, and persons with disabilities in science and engineering: 2021 (NSF 21–321). National Center for Science and Engineering Statistics. Directorate for Social, Behavioral and Economic Sciences. https://ncses.nsf.gov/pubs/nsf21321
- Nugent, G., Barker, B., Grandgenett, N., & Adamchuk, V. I. (2010). Impact of robotics and geospatial technology interventions on youth STEM learning and attitudes. Journal of Research on Technology in Education, 42(4), 391–408. https://doi.org/10.1080/15391 523.2010.10782557
- Nugent, G., Barker, B., Welch, G., Grandgenett, N., Wu, C., & Nelson, C. (2015). A model of factors contributing to STEM learning and career orientation. International Journal of Science Education, 37(7), 1067–1088. https://doi.org/10.1080/09500693.2015.1017863
- Nguyen, N. C., Phan, H. T. T., Tran, O. T. K., Nguyen, P. V., & Nguyen, D. T. K. (2025). A study of high school students' stem attitudes: Analyzing changes by gender and grade. European Journal of STEM Education, 10(1), 32. https://doi.org/10.20897/ejsteme/17537
- Oon, P. T., Cheng, M. M. W., & Wong, A. S. L. (2020). Gender differences in attitude towards science: methodology for prioritising contributing factors. International Journal of Science Education, 42(1), 89–112. https://doi.org/10.1080/09500693.2019.1701217
- Papadakis, S. (2018). Gender stereotypes in Greek computer science school textbooks. International Journal of Teaching and Case Studies, 9(1), 48–71. https://doi.org/10.1504/IJTCS.2018.090196
- Papadakis, S., Tousia, C., & Polychronaki, K. (2018). Women in computer science. The case study of the Computer Science Department of the University of Crete, Greece. International Journal of Teaching and Case Studies, 9(2), 142–151. https://doi.org/10.1504/IJTCS.2018.090963
- Pell, T., & Jarvis, T. (2001). Developing attitude to science scales for use with children of ages from five to eleven years. International Journal of Science Education, 23(8), 847–862. https://doi.org/10.1080/09500690010016111
- Price, C. A., Kares, F., Segovia, G., & Loyd, A. B. (2018). Staff matter: Gender differences in science, technology, engineering or math (STEM) career interest development in adolescent youth. Applied Developmental Science, 23(3), 239–254. https://doi.org/10.1080/10888691.2017.1398090
- Roberts, T., Jackson, C., Mohr-Schroeder, M. J., Bush, S. B., Maiorca, C., Cavalcanti, M., Craig Schroeder, D., Delaney, A., Putnam, L., & Cremeans, C. (2018). Students' perceptions of STEM learning after participating in a summer informal learning experience. International Journal of STEM Education, 5(1), 5. https://doi.org/ 10.1186/s40594-018-0133-4
- Rovai, A., Baker, J., & Ponton, M. (2014). Social science research design and statistics: A practitioner’s guide to research methods and IBM SPSS analysis. Watertree Press LLC.
- Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education, 5(3-4), 17–28. https://www.jstem.org/jstem/index.php/JSTEM/article/view/1126/981
- Ryu, M., Tuvilla, M. R. S., & Wright, C. E. (2019). Resettled burmese refugee youths’ identity work in an afterschool STEM learning setting. Journal of Research in Childhood Education, 33(1), 84–97. https://doi.org/10.1080/02568543.2018.1531454
- Sáinz, M. (2020). Brechas y sesgos de género en la elección de estudios STEM ¿Por qué ocurren y cómo actuar para eliminarlas? Centro de Estudios Andaluces.
- Sáinz, M., & Müller, J. (2017). Gender and family influences on Spanish students’ aspirations and values in stem fields. International Journal of Science Education, 40(2), 188–203. https://doi.org/10.1080/09500693.2017.1405464
- Sha, L., Schunn, C., & Bathgate, M. (2015). Measuring choice to participate in optional science learning experiences during early adolescence. Journal of Research in Science Teaching, 52(5), 686–709. https://doi.org/10.1002/tea.21210
- Sharaby, R. (2021). Between cultures and generations: Ethnic activism of 1.5 generation immigrant leaders. Journal of Ethnic and Cultural Studies2021, 8(1), 270-290. http://dx.doi.org/10.29333/ejecs/665
- Simarro, C., López, V., Cornellà, P., Peracaula, M., Niell, M., & Estebanell, M. (2016). Més enllà de la programació i la robòtica educativa: el pensament computacional en l'ensenyament STEAM a infantil i primària [Beyond programming and educational robotics: computational thinking in STEAM education for early childhood and primary school]. Ciències. Revista del Professorat de Ciències d'Infantil, Primària i Secundària, 32, 38–46. https://revistes.uab.cat/ciencies/article/view/n32-simarro-lopez-conella-etal
- Talafian, H., Moy, M. K., Woodard, M. A., & Foster, A. N. (2019). STEM identity exploration through an immersive learning environment. Journal for STEM Education Research, 2, 105–127. https://doi.org/10.1007/s41979-019-00018-7
- Todd, B. L., & Zvoch, K. (2019). The effect of an informal science intervention on middle school girls’ science affinities. International Journal of Science Education, 41(1), 102–122. https://doi.org/10. 1080/09500693.2018.1534022
- Toma, R. B., & Greca, I. M. (2018). The effect of integrative STEM instruction on elementary students’ attitudes toward science. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1383–1395. https://doi.org/10.29333/ejmste/83676
- Toma, R. B., & García-Carmona, A. (2021). «De STEM nos gusta todo menos STEM». Análisis crítico de una tendencia educativa de moda [«Of STEM we like everything but STEM». A critical analysis of a buzzing educational trend]. Enseñanza de las Ciencias: Revista de Investigación y Experiencias Didácticas, 39(1), 65–80, https://doi.org/10.5565/rev/ensciencias.3093
- Türkoğuz, S., & Kayalar, A. (2021). The effect of mobile-STEM teaching implementations on engineering design process skills of pre-service teachers. Asian Journal of Instruction, 9(2), 34-54. https://doi.org/10.47215/aji.974899
- Tytler, R. (2014). Attitudes, identity, and aspirations toward science. In S. Abell & N. Lederman (Eds.), Handbook of research on science education (Vol. II, pp. 82–103). Routledge.
- UNESCO (2019). Descifrar el código: La educación de las niñas y las mujeres en ciencias, tecnología, ingeniería y matemáticas (STEM) [Decoding the code: The education of girls and women in science, technology, engineering, and mathematics (STEM)]. UNESCO. https://unesdoc.unesco.org/ark:/48223/ pf0000366649
- Vandell, D. L., Pierce, K. M., & Dadisman, K. (2005). Out-of-school settings as a developmental context for children and youth. In R. V. Kail (Ed.), Advances in child development and behavior (Vol. 33, pp. 43–77). Elsevier. https://doi.org/10.1016/S0065-2407(05)80004-7
- Vossoughi, S., & Bevan, B. (2014). Making and Tinkering: A Review of the Literature. National Research Council Committee on Out of School Time STEM: 1–55. http://sites.nationalacademies.org/cs/groups/dbassesite/ documents/webpage/dbasse_089888.pdf
- Weber, K., & Custer, R. (2005). Gender Differences in Interest, Perceived Personal Capacity, and Participation in STEM-Related Activities. Journal of Technology Education, 16(2), 55–71. https://doi.org/10.21061/jte.v24i1.a.2
- Xia, X., Bentley, L., Fan, X., & Tai, R. (2024). STEM Outside of School: A meta-analysis of the effects of informal science education on students' interests and attitudes for STEM. International Journal of Science and Mathematics Education, 23(4), 1153–1181. https://doi.org/10.1007/s10763-024-10504-z
- Yıldız, M., & Ecevit, T. (2024). Impact of STEM on primary school students' 21st century skills, nos, and learning experiences. Asian Journal of Instruction, 12(2), 21-37. https://doi.org/10.47215/aji.1395298
APA 7th edition
In-text citation: (González-Arechavala et al., 2025)
Reference: González-Arechavala, Y., Martín-Carrasquilla, O., Muñoz-San Roque, I., & Medina-Hernández, M. J. (2025). The vision of future generations towards STEM education: Impact of a tech summer camp.
European Journal of STEM Education, 10(1), Article 35.
https://doi.org/10.20897/ejsteme/17643
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: González-Arechavala Y, Martín-Carrasquilla O, Muñoz-San Roque I, Medina-Hernández MJ. The vision of future generations towards STEM education: Impact of a tech summer camp.
European Journal of STEM Education. 2025;10(1), 35.
https://doi.org/10.20897/ejsteme/17643
Chicago
In-text citation: (González-Arechavala et al., 2025)
Reference: González-Arechavala, Yolanda, Olga Martín-Carrasquilla, Isabel Muñoz-San Roque, and María José Medina-Hernández. "The vision of future generations towards STEM education: Impact of a tech summer camp".
European Journal of STEM Education 2025 10 no. 1 (2025): 35.
https://doi.org/10.20897/ejsteme/17643
Harvard
In-text citation: (González-Arechavala et al., 2025)
Reference: González-Arechavala, Y., Martín-Carrasquilla, O., Muñoz-San Roque, I., and Medina-Hernández, M. J. (2025). The vision of future generations towards STEM education: Impact of a tech summer camp.
European Journal of STEM Education, 10(1), 35.
https://doi.org/10.20897/ejsteme/17643
MLA
In-text citation: (González-Arechavala et al., 2025)
Reference: González-Arechavala, Yolanda et al. "The vision of future generations towards STEM education: Impact of a tech summer camp".
European Journal of STEM Education, vol. 10, no. 1, 2025, 35.
https://doi.org/10.20897/ejsteme/17643
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: González-Arechavala Y, Martín-Carrasquilla O, Muñoz-San Roque I, Medina-Hernández MJ. The vision of future generations towards STEM education: Impact of a tech summer camp. European Journal of STEM Education. 2025;10(1):35.
https://doi.org/10.20897/ejsteme/17643